$m\leq1具有修正$m$-Bakry-Emery-Ricci下界的黎曼流形上的拉普拉斯比较定理$

IF 0.4 4区 数学 Q4 MATHEMATICS
K. Kuwae, Toshiki Shukuri
{"title":"$m\\leq1具有修正$m$-Bakry-Emery-Ricci下界的黎曼流形上的拉普拉斯比较定理$","authors":"K. Kuwae, Toshiki Shukuri","doi":"10.2748/tmj.20201028","DOIUrl":null,"url":null,"abstract":"In this paper, we prove a Laplacian comparison theorem for non-symmetric diffusion operator on complete smooth n-dimensional Riemannian manifold having a lower bound of modified m-Bakry-Émery Ricci tensor under m ≤ 1 in terms of vector fields. As consequences, we give the optimal conditions for modified m-Bakry-Émery Ricci tensor under m ≤ 1 such that the (weighted) Myers’ theorem, Bishop-Gromov volume comparison theorem, Ambrose-Myers’ theorem, Cheng’s maximal diameter theorem, and the Cheeger-Gromoll type splitting theorem hold. Some of these results were well-studied for m-Bakry-Émery Ricci curvature under m ≥ n ([19, 21, 27, 33]) or m = 1 ([34, 35]) if the vector field is a gradient type. When m < 1, our results are new in the literature.","PeriodicalId":54427,"journal":{"name":"Tohoku Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Laplacian comparison theorem on Riemannian manifolds with modified $m$-Bakry-Emery Ricci lower bounds for $m\\\\leq1$\",\"authors\":\"K. Kuwae, Toshiki Shukuri\",\"doi\":\"10.2748/tmj.20201028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we prove a Laplacian comparison theorem for non-symmetric diffusion operator on complete smooth n-dimensional Riemannian manifold having a lower bound of modified m-Bakry-Émery Ricci tensor under m ≤ 1 in terms of vector fields. As consequences, we give the optimal conditions for modified m-Bakry-Émery Ricci tensor under m ≤ 1 such that the (weighted) Myers’ theorem, Bishop-Gromov volume comparison theorem, Ambrose-Myers’ theorem, Cheng’s maximal diameter theorem, and the Cheeger-Gromoll type splitting theorem hold. Some of these results were well-studied for m-Bakry-Émery Ricci curvature under m ≥ n ([19, 21, 27, 33]) or m = 1 ([34, 35]) if the vector field is a gradient type. When m < 1, our results are new in the literature.\",\"PeriodicalId\":54427,\"journal\":{\"name\":\"Tohoku Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tohoku Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2748/tmj.20201028\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tohoku Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2748/tmj.20201028","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

本文用向量场证明了在m≤1条件下,具有修正m-Bakry-Émery-Ricci张量下界的完备光滑n维黎曼流形上非对称扩散算子的拉普拉斯比较定理。因此,我们给出了m≤1下修正m-Bakry-Émery-Ricci张量的最优条件,使得(加权)Myers定理、Bishop Gromov体积比较定理、Ambrose-Meyers定理、Cheng最大直径定理和Cheeger-Gromoll型分裂定理成立。其中一些结果在m≥n([19,21,27,33])或m=1([34,35])(如果矢量场是梯度类型)下的m-Bakry-Émery-Ricci曲率下得到了很好的研究。当m<1时,我们的结果在文献中是新的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Laplacian comparison theorem on Riemannian manifolds with modified $m$-Bakry-Emery Ricci lower bounds for $m\leq1$
In this paper, we prove a Laplacian comparison theorem for non-symmetric diffusion operator on complete smooth n-dimensional Riemannian manifold having a lower bound of modified m-Bakry-Émery Ricci tensor under m ≤ 1 in terms of vector fields. As consequences, we give the optimal conditions for modified m-Bakry-Émery Ricci tensor under m ≤ 1 such that the (weighted) Myers’ theorem, Bishop-Gromov volume comparison theorem, Ambrose-Myers’ theorem, Cheng’s maximal diameter theorem, and the Cheeger-Gromoll type splitting theorem hold. Some of these results were well-studied for m-Bakry-Émery Ricci curvature under m ≥ n ([19, 21, 27, 33]) or m = 1 ([34, 35]) if the vector field is a gradient type. When m < 1, our results are new in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
22
审稿时长
>12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信