{"title":"应用科学中分数模型求解的同调摄动Shehu变换方法","authors":"Shehu Maitama, Weidong Zhao","doi":"10.17512/JAMCM.2021.1.07","DOIUrl":null,"url":null,"abstract":". Using the recently proposed homotopy perturbation Shehu transform method (HPSTM), we successfully construct reliable solutions of some important fractional models arising in applied physical sciences. The nonlinear terms are decomposed using He’s polynomials, and the fractional derivative is calculated in the Caputo sense. Using the analytical method, we obtained the exact solution of the fractional diffusion equation, fractional wave equation and the nonlinear fractional gas dynamic equation.","PeriodicalId":43867,"journal":{"name":"Journal of Applied Mathematics and Computational Mechanics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Homotopy perturbation Shehu transform method for solving fractional models arising in applied sciences\",\"authors\":\"Shehu Maitama, Weidong Zhao\",\"doi\":\"10.17512/JAMCM.2021.1.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Using the recently proposed homotopy perturbation Shehu transform method (HPSTM), we successfully construct reliable solutions of some important fractional models arising in applied physical sciences. The nonlinear terms are decomposed using He’s polynomials, and the fractional derivative is calculated in the Caputo sense. Using the analytical method, we obtained the exact solution of the fractional diffusion equation, fractional wave equation and the nonlinear fractional gas dynamic equation.\",\"PeriodicalId\":43867,\"journal\":{\"name\":\"Journal of Applied Mathematics and Computational Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics and Computational Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17512/JAMCM.2021.1.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics and Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17512/JAMCM.2021.1.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Homotopy perturbation Shehu transform method for solving fractional models arising in applied sciences
. Using the recently proposed homotopy perturbation Shehu transform method (HPSTM), we successfully construct reliable solutions of some important fractional models arising in applied physical sciences. The nonlinear terms are decomposed using He’s polynomials, and the fractional derivative is calculated in the Caputo sense. Using the analytical method, we obtained the exact solution of the fractional diffusion equation, fractional wave equation and the nonlinear fractional gas dynamic equation.