应用科学中分数模型求解的同调摄动Shehu变换方法

IF 0.8 Q2 MATHEMATICS
Shehu Maitama, Weidong Zhao
{"title":"应用科学中分数模型求解的同调摄动Shehu变换方法","authors":"Shehu Maitama, Weidong Zhao","doi":"10.17512/JAMCM.2021.1.07","DOIUrl":null,"url":null,"abstract":". Using the recently proposed homotopy perturbation Shehu transform method (HPSTM), we successfully construct reliable solutions of some important fractional models arising in applied physical sciences. The nonlinear terms are decomposed using He’s polynomials, and the fractional derivative is calculated in the Caputo sense. Using the analytical method, we obtained the exact solution of the fractional diffusion equation, fractional wave equation and the nonlinear fractional gas dynamic equation.","PeriodicalId":43867,"journal":{"name":"Journal of Applied Mathematics and Computational Mechanics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Homotopy perturbation Shehu transform method for solving fractional models arising in applied sciences\",\"authors\":\"Shehu Maitama, Weidong Zhao\",\"doi\":\"10.17512/JAMCM.2021.1.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Using the recently proposed homotopy perturbation Shehu transform method (HPSTM), we successfully construct reliable solutions of some important fractional models arising in applied physical sciences. The nonlinear terms are decomposed using He’s polynomials, and the fractional derivative is calculated in the Caputo sense. Using the analytical method, we obtained the exact solution of the fractional diffusion equation, fractional wave equation and the nonlinear fractional gas dynamic equation.\",\"PeriodicalId\":43867,\"journal\":{\"name\":\"Journal of Applied Mathematics and Computational Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics and Computational Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17512/JAMCM.2021.1.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics and Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17512/JAMCM.2021.1.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

摘要

.利用最近提出的同伦微扰Shehu变换方法(HPSTM),我们成功地构造了应用物理科学中出现的一些重要分数模型的可靠解。非线性项使用He多项式进行分解,并在Caputo意义上计算分数导数。利用解析方法,得到了分数阶扩散方程、分数阶波动方程和非线性分数阶气体动力学方程的精确解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homotopy perturbation Shehu transform method for solving fractional models arising in applied sciences
. Using the recently proposed homotopy perturbation Shehu transform method (HPSTM), we successfully construct reliable solutions of some important fractional models arising in applied physical sciences. The nonlinear terms are decomposed using He’s polynomials, and the fractional derivative is calculated in the Caputo sense. Using the analytical method, we obtained the exact solution of the fractional diffusion equation, fractional wave equation and the nonlinear fractional gas dynamic equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
30
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信