刘维尔定理中最优幂的一个简单证明

Pub Date : 2020-03-09 DOI:10.5565/publmat6622212
S. Villegas
{"title":"刘维尔定理中最优幂的一个简单证明","authors":"S. Villegas","doi":"10.5565/publmat6622212","DOIUrl":null,"url":null,"abstract":"Consider the equation div$(\\varphi^2 \\nabla \\sigma)=0$ in $\\mathbb{R}^N,$ where $\\varphi>0$. It is well-known that if there exists $C>0$ such that $\\int_{B_R}(\\varphi \\sigma)^2 dx\\leq CR^2$ for every $R\\geq 1$ then $\\sigma$ is necessarily constant. In this paper we prove that this result is not true if we replace $R^2$ by $R^k$ for $k>2$ in any dimension $N$. This question is related to a conjecture by De Giorgi.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A simple proof of the optimal power in Liouville theorems\",\"authors\":\"S. Villegas\",\"doi\":\"10.5565/publmat6622212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider the equation div$(\\\\varphi^2 \\\\nabla \\\\sigma)=0$ in $\\\\mathbb{R}^N,$ where $\\\\varphi>0$. It is well-known that if there exists $C>0$ such that $\\\\int_{B_R}(\\\\varphi \\\\sigma)^2 dx\\\\leq CR^2$ for every $R\\\\geq 1$ then $\\\\sigma$ is necessarily constant. In this paper we prove that this result is not true if we replace $R^2$ by $R^k$ for $k>2$ in any dimension $N$. This question is related to a conjecture by De Giorgi.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5565/publmat6622212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5565/publmat6622212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

考虑方程div$(\varphi^2 \nabla \sigma)=0$ 在 $\mathbb{R}^N,$ 在哪里 $\varphi>0$. 众所周知,如果存在的话 $C>0$ 这样 $\int_{B_R}(\varphi \sigma)^2 dx\leq CR^2$ 对于每一个 $R\geq 1$ 然后 $\sigma$ 必然是常数。在本文中,我们证明了如果进行替换,这个结果是不成立的 $R^2$ 通过 $R^k$ 为了 $k>2$ 在任何维度上 $N$. 这个问题与德·乔治的一个猜想有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A simple proof of the optimal power in Liouville theorems
Consider the equation div$(\varphi^2 \nabla \sigma)=0$ in $\mathbb{R}^N,$ where $\varphi>0$. It is well-known that if there exists $C>0$ such that $\int_{B_R}(\varphi \sigma)^2 dx\leq CR^2$ for every $R\geq 1$ then $\sigma$ is necessarily constant. In this paper we prove that this result is not true if we replace $R^2$ by $R^k$ for $k>2$ in any dimension $N$. This question is related to a conjecture by De Giorgi.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信