{"title":"棕榈油基多元醇制备的半刚性水吹聚氨酯泡沫的阻燃性、热性能和物理机械性能","authors":"M. H. Dzulkifli, M. Yahya, R. A. Majid","doi":"10.1177/02624893211061633","DOIUrl":null,"url":null,"abstract":"This paper presents the experimental work undertaken to assess rigid palm oil-based polyurethane (PU) foam. The bio-composite foam was characterized to determine its foaming kinetics and morphology, as well as fire retardancy, thermal, and mechanical responses, which was later compared with its petrochemical-based counterpart. The palm oil-based foam displayed poor fire-retardancy performance based on Limiting Oxygen Index (LOI) and UL-94 Vertical Combustion Test. Although less char residue was produced, the palm oil-based PU foam exhibited higher onset degradation temperatures, indicating improved thermal stability. The Scanning Electron Microscopy (SEM) revealed finer cell sizes for the bio-based foam and a higher fraction of open cell structures, which affected its density and compressive properties. As a conclusion, the palm oil-based PU foam is a viable alternative to be utilized in low load-bearing and thermal environment applications.","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":"41 1","pages":"103 - 118"},"PeriodicalIF":1.3000,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fire retardancy, thermal, and physico-mechanical properties of semi-rigid water-blown polyurethane foam from palm oil-based polyol\",\"authors\":\"M. H. Dzulkifli, M. Yahya, R. A. Majid\",\"doi\":\"10.1177/02624893211061633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the experimental work undertaken to assess rigid palm oil-based polyurethane (PU) foam. The bio-composite foam was characterized to determine its foaming kinetics and morphology, as well as fire retardancy, thermal, and mechanical responses, which was later compared with its petrochemical-based counterpart. The palm oil-based foam displayed poor fire-retardancy performance based on Limiting Oxygen Index (LOI) and UL-94 Vertical Combustion Test. Although less char residue was produced, the palm oil-based PU foam exhibited higher onset degradation temperatures, indicating improved thermal stability. The Scanning Electron Microscopy (SEM) revealed finer cell sizes for the bio-based foam and a higher fraction of open cell structures, which affected its density and compressive properties. As a conclusion, the palm oil-based PU foam is a viable alternative to be utilized in low load-bearing and thermal environment applications.\",\"PeriodicalId\":9816,\"journal\":{\"name\":\"Cellular Polymers\",\"volume\":\"41 1\",\"pages\":\"103 - 118\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/02624893211061633\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/02624893211061633","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Fire retardancy, thermal, and physico-mechanical properties of semi-rigid water-blown polyurethane foam from palm oil-based polyol
This paper presents the experimental work undertaken to assess rigid palm oil-based polyurethane (PU) foam. The bio-composite foam was characterized to determine its foaming kinetics and morphology, as well as fire retardancy, thermal, and mechanical responses, which was later compared with its petrochemical-based counterpart. The palm oil-based foam displayed poor fire-retardancy performance based on Limiting Oxygen Index (LOI) and UL-94 Vertical Combustion Test. Although less char residue was produced, the palm oil-based PU foam exhibited higher onset degradation temperatures, indicating improved thermal stability. The Scanning Electron Microscopy (SEM) revealed finer cell sizes for the bio-based foam and a higher fraction of open cell structures, which affected its density and compressive properties. As a conclusion, the palm oil-based PU foam is a viable alternative to be utilized in low load-bearing and thermal environment applications.
期刊介绍:
Cellular Polymers is concerned primarily with the science of foamed materials, the technology and state of the art for processing and fabricating, the engineering techniques and principles of the machines used to produce them economically, and their applications in varied and wide ranging uses where they are making an increasingly valuable contribution.
Potential problems for the industry are also covered, including fire performance of materials, CFC-replacement technology, recycling and environmental legislation. Reviews of technical and commercial advances in the manufacturing and application technologies are also included.
Cellular Polymers covers these and other related topics and also pays particular attention to the ways in which the science and technology of cellular polymers is being developed throughout the world.