点涡动力学的辛约化可积性:综述

Q3 Mathematics
Klas Modin, Milo Viviani
{"title":"点涡动力学的辛约化可积性:综述","authors":"Klas Modin,&nbsp;Milo Viviani","doi":"10.1007/s40598-020-00162-8","DOIUrl":null,"url":null,"abstract":"<div><p>Point-vortex dynamics describe idealized, non-smooth solutions to the incompressible Euler equations on two-dimensional manifolds. Integrability results for few point-vortices on various domains is a vivid topic, with many results and techniques scattered in the literature. Here, we give a unified framework for proving integrability results for <span>\\(N=2\\)</span>, 3, or 4 point-vortices (and also more general Hamiltonian systems), based on symplectic reduction theory. The approach works on any two-dimensional manifold with a symmetry group; we illustrate it on the sphere, the plane, the hyperbolic plane, and the flat torus. A systematic study of integrability is prompted by advances in two-dimensional turbulence, bridging the long-time behaviour of 2D Euler equations with questions of point-vortex integrability. A gallery of solutions is given in the appendix.</p></div>","PeriodicalId":37546,"journal":{"name":"Arnold Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40598-020-00162-8","citationCount":"13","resultStr":"{\"title\":\"Integrability of Point-Vortex Dynamics via Symplectic Reduction: A Survey\",\"authors\":\"Klas Modin,&nbsp;Milo Viviani\",\"doi\":\"10.1007/s40598-020-00162-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Point-vortex dynamics describe idealized, non-smooth solutions to the incompressible Euler equations on two-dimensional manifolds. Integrability results for few point-vortices on various domains is a vivid topic, with many results and techniques scattered in the literature. Here, we give a unified framework for proving integrability results for <span>\\\\(N=2\\\\)</span>, 3, or 4 point-vortices (and also more general Hamiltonian systems), based on symplectic reduction theory. The approach works on any two-dimensional manifold with a symmetry group; we illustrate it on the sphere, the plane, the hyperbolic plane, and the flat torus. A systematic study of integrability is prompted by advances in two-dimensional turbulence, bridging the long-time behaviour of 2D Euler equations with questions of point-vortex integrability. A gallery of solutions is given in the appendix.</p></div>\",\"PeriodicalId\":37546,\"journal\":{\"name\":\"Arnold Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40598-020-00162-8\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arnold Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40598-020-00162-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arnold Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40598-020-00162-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 13

摘要

点涡动力学描述了二维流形上不可压缩欧拉方程的理想化、非光滑解。不同域上少点涡的可积性结果是一个生动的主题,许多结果和技术分散在文献中。在这里,我们给出了一个统一的框架来证明\(N=2\),3,或4点涡旋(以及更一般的哈密顿系统)的可积性结果,基于辛归约理论。该方法适用于任何具有对称群的二维流形;我们在球面、平面、双曲面和平面环面上说明它。二维湍流的发展推动了对可积性的系统研究,将二维欧拉方程的长期行为与点涡可积性问题联系起来。附录中给出了一系列解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrability of Point-Vortex Dynamics via Symplectic Reduction: A Survey

Point-vortex dynamics describe idealized, non-smooth solutions to the incompressible Euler equations on two-dimensional manifolds. Integrability results for few point-vortices on various domains is a vivid topic, with many results and techniques scattered in the literature. Here, we give a unified framework for proving integrability results for \(N=2\), 3, or 4 point-vortices (and also more general Hamiltonian systems), based on symplectic reduction theory. The approach works on any two-dimensional manifold with a symmetry group; we illustrate it on the sphere, the plane, the hyperbolic plane, and the flat torus. A systematic study of integrability is prompted by advances in two-dimensional turbulence, bridging the long-time behaviour of 2D Euler equations with questions of point-vortex integrability. A gallery of solutions is given in the appendix.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arnold Mathematical Journal
Arnold Mathematical Journal Mathematics-Mathematics (all)
CiteScore
1.50
自引率
0.00%
发文量
28
期刊介绍: The Arnold Mathematical Journal publishes interesting and understandable results in all areas of mathematics. The name of the journal is not only a dedication to the memory of Vladimir Arnold (1937 – 2010), one of the most influential mathematicians of the 20th century, but also a declaration that the journal should serve to maintain and promote the scientific style characteristic for Arnold''s best mathematical works. Features of AMJ publications include: Popularity. The journal articles should be accessible to a very wide community of mathematicians. Not only formal definitions necessary for the understanding must be provided but also informal motivations even if the latter are well-known to the experts in the field. Interdisciplinary and multidisciplinary mathematics. AMJ publishes research expositions that connect different mathematical subjects. Connections that are useful in both ways are of particular importance. Multidisciplinary research (even if the disciplines all belong to pure mathematics) is generally hard to evaluate, for this reason, this kind of research is often under-represented in specialized mathematical journals. AMJ will try to compensate for this.Problems, objectives, work in progress. Most scholarly publications present results of a research project in their “final'' form, in which all posed questions are answered. Some open questions and conjectures may be even mentioned, but the very process of mathematical discovery remains hidden. Following Arnold, publications in AMJ will try to unhide this process and made it public by encouraging the authors to include informal discussion of their motivation, possibly unsuccessful lines of attack, experimental data and close by research directions. AMJ publishes well-motivated research problems on a regular basis.  Problems do not need to be original; an old problem with a new and exciting motivation is worth re-stating. Following Arnold''s principle, a general formulation is less desirable than the simplest partial case that is still unknown.Being interesting. The most important requirement is that the article be interesting. It does not have to be limited by original research contributions of the author; however, the author''s responsibility is to carefully acknowledge the authorship of all results. Neither does the article need to consist entirely of formal and rigorous arguments. It can contain parts, in which an informal author''s understanding of the overall picture is presented; however, these parts must be clearly indicated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信