{"title":"氨基脲的缓蚀相关性:电子结构、反应性和配位化学","authors":"C. Verma, M. Quraishi, K. Rhee","doi":"10.1515/revce-2022-0009","DOIUrl":null,"url":null,"abstract":"Abstract Semicarbazide (OC(NH2)(N2H3)) and thiosemicarbazide (SC(NH2)(N2H3)) are well-known for their coordination complex formation ability. They contain nonbonding electrons in the form of heteroatoms (N, O and S) and π-electrons in the form of >C=O and >C=S through they strongly coordinate with the metal atoms and ions. Because of their association with this property, the Semicarbazide (SC), thiosemicarbazide (TSC) and their derivatives are widely used for different applications. They serve as building blocks for synthesis of various industrially and biologically useful chemicals. The SC, TSC and they derivatives are also serve as strong aqueous phase corrosion inhibitors. In the present reports, the coordination ability and corrosion protection tendency of Semicarbazide (SC), thiosemicarbazide (TSC) and their derivatives is surveyed and described. These compounds are widely used as inhibitors for different metals and alloys. Through their electron rich sites they adsorb on the metal surface and build corrosion protective film. Their adsorption mostly followed the Langmuir adsorption isotherm. Through their adsorption they increase the value of charge transfer resistance and decrease the value of corrosion current density. Computational studies adopted in the literature indicate that SC, TSC and their derivatives adsorb flatly and spontaneously using charge transfer mechanism.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2022-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Corrosion inhibition relevance of semicarbazides: electronic structure, reactivity and coordination chemistry\",\"authors\":\"C. Verma, M. Quraishi, K. Rhee\",\"doi\":\"10.1515/revce-2022-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Semicarbazide (OC(NH2)(N2H3)) and thiosemicarbazide (SC(NH2)(N2H3)) are well-known for their coordination complex formation ability. They contain nonbonding electrons in the form of heteroatoms (N, O and S) and π-electrons in the form of >C=O and >C=S through they strongly coordinate with the metal atoms and ions. Because of their association with this property, the Semicarbazide (SC), thiosemicarbazide (TSC) and their derivatives are widely used for different applications. They serve as building blocks for synthesis of various industrially and biologically useful chemicals. The SC, TSC and they derivatives are also serve as strong aqueous phase corrosion inhibitors. In the present reports, the coordination ability and corrosion protection tendency of Semicarbazide (SC), thiosemicarbazide (TSC) and their derivatives is surveyed and described. These compounds are widely used as inhibitors for different metals and alloys. Through their electron rich sites they adsorb on the metal surface and build corrosion protective film. Their adsorption mostly followed the Langmuir adsorption isotherm. Through their adsorption they increase the value of charge transfer resistance and decrease the value of corrosion current density. Computational studies adopted in the literature indicate that SC, TSC and their derivatives adsorb flatly and spontaneously using charge transfer mechanism.\",\"PeriodicalId\":54485,\"journal\":{\"name\":\"Reviews in Chemical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2022-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/revce-2022-0009\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/revce-2022-0009","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Corrosion inhibition relevance of semicarbazides: electronic structure, reactivity and coordination chemistry
Abstract Semicarbazide (OC(NH2)(N2H3)) and thiosemicarbazide (SC(NH2)(N2H3)) are well-known for their coordination complex formation ability. They contain nonbonding electrons in the form of heteroatoms (N, O and S) and π-electrons in the form of >C=O and >C=S through they strongly coordinate with the metal atoms and ions. Because of their association with this property, the Semicarbazide (SC), thiosemicarbazide (TSC) and their derivatives are widely used for different applications. They serve as building blocks for synthesis of various industrially and biologically useful chemicals. The SC, TSC and they derivatives are also serve as strong aqueous phase corrosion inhibitors. In the present reports, the coordination ability and corrosion protection tendency of Semicarbazide (SC), thiosemicarbazide (TSC) and their derivatives is surveyed and described. These compounds are widely used as inhibitors for different metals and alloys. Through their electron rich sites they adsorb on the metal surface and build corrosion protective film. Their adsorption mostly followed the Langmuir adsorption isotherm. Through their adsorption they increase the value of charge transfer resistance and decrease the value of corrosion current density. Computational studies adopted in the literature indicate that SC, TSC and their derivatives adsorb flatly and spontaneously using charge transfer mechanism.
期刊介绍:
Reviews in Chemical Engineering publishes authoritative review articles on all aspects of the broad field of chemical engineering and applied chemistry. Its aim is to develop new insights and understanding and to promote interest and research activity in chemical engineering, as well as the application of new developments in these areas. The bimonthly journal publishes peer-reviewed articles by leading chemical engineers, applied scientists and mathematicians. The broad interest today in solutions through chemistry to some of the world’s most challenging problems ensures that Reviews in Chemical Engineering will play a significant role in the growth of the field as a whole.