路径、蜘蛛图和环中的b奖收集多切问题

IF 0.6 4区 计算机科学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Xiaofei Liu, Weidong Li
{"title":"路径、蜘蛛图和环中的b奖收集多切问题","authors":"Xiaofei Liu, Weidong Li","doi":"10.1142/s0129054123460012","DOIUrl":null,"url":null,"abstract":"Given a graph [Formula: see text], a set of [Formula: see text] source-sink pairs [Formula: see text] [Formula: see text] and a profit bound [Formula: see text], every edge [Formula: see text] has a cost [Formula: see text], and every source-sink pair [Formula: see text] has a profit [Formula: see text] and a penalty [Formula: see text]. The [Formula: see text]-prize-collecting multicut problem ([Formula: see text]-PCMP) is to find a multicut [Formula: see text] such that the objective cost, which consists of the total cost of the edges in [Formula: see text] and the total penalty of the pairs still connected after removing [Formula: see text], is minimized and the total profit of the disconnected pairs by removing [Formula: see text] is at least [Formula: see text]. In this paper, we firstly consider the [Formula: see text]-PCMP in paths, and prove that it is [Formula: see text]-hard even when [Formula: see text] for any [Formula: see text]. Then, we present a fully polynomial time approximation scheme (FPTAS) whose running time is [Formula: see text] for the [Formula: see text]-PCMP in paths. Based on this algorithm, we present an FPTAS whose running time is [Formula: see text] for the [Formula: see text]-PCMP in spider graphs, and an FPTAS whose running time is [Formula: see text] for the [Formula: see text]-PCMP in rings, respectively, where [Formula: see text] is the number of leaves of spider graph.","PeriodicalId":50323,"journal":{"name":"International Journal of Foundations of Computer Science","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The B-Prize-Collecting Multicut Problem in Paths, Spider Graphs and Rings\",\"authors\":\"Xiaofei Liu, Weidong Li\",\"doi\":\"10.1142/s0129054123460012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a graph [Formula: see text], a set of [Formula: see text] source-sink pairs [Formula: see text] [Formula: see text] and a profit bound [Formula: see text], every edge [Formula: see text] has a cost [Formula: see text], and every source-sink pair [Formula: see text] has a profit [Formula: see text] and a penalty [Formula: see text]. The [Formula: see text]-prize-collecting multicut problem ([Formula: see text]-PCMP) is to find a multicut [Formula: see text] such that the objective cost, which consists of the total cost of the edges in [Formula: see text] and the total penalty of the pairs still connected after removing [Formula: see text], is minimized and the total profit of the disconnected pairs by removing [Formula: see text] is at least [Formula: see text]. In this paper, we firstly consider the [Formula: see text]-PCMP in paths, and prove that it is [Formula: see text]-hard even when [Formula: see text] for any [Formula: see text]. Then, we present a fully polynomial time approximation scheme (FPTAS) whose running time is [Formula: see text] for the [Formula: see text]-PCMP in paths. Based on this algorithm, we present an FPTAS whose running time is [Formula: see text] for the [Formula: see text]-PCMP in spider graphs, and an FPTAS whose running time is [Formula: see text] for the [Formula: see text]-PCMP in rings, respectively, where [Formula: see text] is the number of leaves of spider graph.\",\"PeriodicalId\":50323,\"journal\":{\"name\":\"International Journal of Foundations of Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Foundations of Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129054123460012\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Foundations of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/s0129054123460012","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

给定一个图[公式:见文],一组[公式:见文]源汇对[公式:见文][公式:见文]和一个利润界限[公式:见文],每条边[公式:见文]都有一个成本[公式:见文],每个源汇对[公式:见文]都有一个利润[公式:见文]和一个损失[公式:见文]。[公式:见文]-计奖多切口问题([公式:见文]-PCMP)是寻找一个多切口[公式:见文],使[公式:见文]中边缘的总成本和去除[公式:见文]后仍然连接的对的总惩罚的客观成本最小,并且通过去除[公式:见文]而断开的对的总利润至少为[公式:见文]。本文首先考虑路径中的[Formula: see text]-PCMP,并证明对于任何[Formula: see text],即使[Formula: see text]是[Formula: see text]-hard。然后,我们提出了一个完全多项式时间近似方案(FPTAS),其运行时间为[公式:见文本]-路径中的pcmp。在此算法的基础上,我们提出了一个运行时间为[公式:见文]的蜘蛛图-PCMP的FPTAS,以及一个运行时间为[公式:见文]的[公式:见文]的[圆环]-PCMP的FPTAS,其中[公式:见文]为蜘蛛图的叶子数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The B-Prize-Collecting Multicut Problem in Paths, Spider Graphs and Rings
Given a graph [Formula: see text], a set of [Formula: see text] source-sink pairs [Formula: see text] [Formula: see text] and a profit bound [Formula: see text], every edge [Formula: see text] has a cost [Formula: see text], and every source-sink pair [Formula: see text] has a profit [Formula: see text] and a penalty [Formula: see text]. The [Formula: see text]-prize-collecting multicut problem ([Formula: see text]-PCMP) is to find a multicut [Formula: see text] such that the objective cost, which consists of the total cost of the edges in [Formula: see text] and the total penalty of the pairs still connected after removing [Formula: see text], is minimized and the total profit of the disconnected pairs by removing [Formula: see text] is at least [Formula: see text]. In this paper, we firstly consider the [Formula: see text]-PCMP in paths, and prove that it is [Formula: see text]-hard even when [Formula: see text] for any [Formula: see text]. Then, we present a fully polynomial time approximation scheme (FPTAS) whose running time is [Formula: see text] for the [Formula: see text]-PCMP in paths. Based on this algorithm, we present an FPTAS whose running time is [Formula: see text] for the [Formula: see text]-PCMP in spider graphs, and an FPTAS whose running time is [Formula: see text] for the [Formula: see text]-PCMP in rings, respectively, where [Formula: see text] is the number of leaves of spider graph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Foundations of Computer Science
International Journal of Foundations of Computer Science 工程技术-计算机:理论方法
CiteScore
1.60
自引率
12.50%
发文量
63
审稿时长
3 months
期刊介绍: The International Journal of Foundations of Computer Science is a bimonthly journal that publishes articles which contribute new theoretical results in all areas of the foundations of computer science. The theoretical and mathematical aspects covered include: - Algebraic theory of computing and formal systems - Algorithm and system implementation issues - Approximation, probabilistic, and randomized algorithms - Automata and formal languages - Automated deduction - Combinatorics and graph theory - Complexity theory - Computational biology and bioinformatics - Cryptography - Database theory - Data structures - Design and analysis of algorithms - DNA computing - Foundations of computer security - Foundations of high-performance computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信