{"title":"地应力与地壳厚度的关系","authors":"Slavko Torbica, Veljko Lapčević","doi":"10.5937/podrad1935013t","DOIUrl":null,"url":null,"abstract":"Available models for estimation of crustal stress consider the vertical stress component as weight of above laying rocks, while horizontal stress components are estimated as function of vertical component. Herein, it is assumed that horizontal stress is effect of strain formed at seismogenic depth and transferred to shallower depth of rock mass. Strain rate is different depending on thickness of the crust and is different in different locations. Using available data regarding the measured maximum horizontal stress and depth of Moho discontinuity trend between these is obtained. Trend shows that maximum horizontal stress is decreasing with the thickness of the Earth’s crust and vice versa. Finally, expression that defines maximum horizontal stress from Moho depth and deformation modulus of rock mass is provided.","PeriodicalId":31689,"journal":{"name":"Podzemni Radovi","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relation between crustal stress and thickness of earth's crust\",\"authors\":\"Slavko Torbica, Veljko Lapčević\",\"doi\":\"10.5937/podrad1935013t\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Available models for estimation of crustal stress consider the vertical stress component as weight of above laying rocks, while horizontal stress components are estimated as function of vertical component. Herein, it is assumed that horizontal stress is effect of strain formed at seismogenic depth and transferred to shallower depth of rock mass. Strain rate is different depending on thickness of the crust and is different in different locations. Using available data regarding the measured maximum horizontal stress and depth of Moho discontinuity trend between these is obtained. Trend shows that maximum horizontal stress is decreasing with the thickness of the Earth’s crust and vice versa. Finally, expression that defines maximum horizontal stress from Moho depth and deformation modulus of rock mass is provided.\",\"PeriodicalId\":31689,\"journal\":{\"name\":\"Podzemni Radovi\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Podzemni Radovi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5937/podrad1935013t\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Podzemni Radovi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/podrad1935013t","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Relation between crustal stress and thickness of earth's crust
Available models for estimation of crustal stress consider the vertical stress component as weight of above laying rocks, while horizontal stress components are estimated as function of vertical component. Herein, it is assumed that horizontal stress is effect of strain formed at seismogenic depth and transferred to shallower depth of rock mass. Strain rate is different depending on thickness of the crust and is different in different locations. Using available data regarding the measured maximum horizontal stress and depth of Moho discontinuity trend between these is obtained. Trend shows that maximum horizontal stress is decreasing with the thickness of the Earth’s crust and vice versa. Finally, expression that defines maximum horizontal stress from Moho depth and deformation modulus of rock mass is provided.