有理倒钩平面曲线与雅可比环的局部上同调

IF 1.1 3区 数学 Q1 MATHEMATICS
A. Dimca
{"title":"有理倒钩平面曲线与雅可比环的局部上同调","authors":"A. Dimca","doi":"10.4171/cmh/471","DOIUrl":null,"url":null,"abstract":"This note gives the complete projective classification of rational, cuspidal plane curves of degree at least 6, and having only weighted homogeneous singularities. It also sheds new light on some previous characterizations of free and nearly free curves in terms of Tjurina numbers. Finally, we suggest a stronger form of Terao’s conjecture on the freeness of a line arrangement being determined by its combinatorics.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2017-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/cmh/471","citationCount":"15","resultStr":"{\"title\":\"On rational cuspidal plane curves and the local cohomology of Jacobian rings\",\"authors\":\"A. Dimca\",\"doi\":\"10.4171/cmh/471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This note gives the complete projective classification of rational, cuspidal plane curves of degree at least 6, and having only weighted homogeneous singularities. It also sheds new light on some previous characterizations of free and nearly free curves in terms of Tjurina numbers. Finally, we suggest a stronger form of Terao’s conjecture on the freeness of a line arrangement being determined by its combinatorics.\",\"PeriodicalId\":50664,\"journal\":{\"name\":\"Commentarii Mathematici Helvetici\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2017-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/cmh/471\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Commentarii Mathematici Helvetici\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/cmh/471\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentarii Mathematici Helvetici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/cmh/471","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 15

摘要

本文给出了至少6次且只有加权齐次奇点的有理尖头平面曲线的完全投影分类。它还揭示了以前用Tjurina数描述自由曲线和近似自由曲线的一些新特征。最后,我们提出了Terao猜想的一种更强的形式,即线排列的自由度由其组合决定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On rational cuspidal plane curves and the local cohomology of Jacobian rings
This note gives the complete projective classification of rational, cuspidal plane curves of degree at least 6, and having only weighted homogeneous singularities. It also sheds new light on some previous characterizations of free and nearly free curves in terms of Tjurina numbers. Finally, we suggest a stronger form of Terao’s conjecture on the freeness of a line arrangement being determined by its combinatorics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: Commentarii Mathematici Helvetici (CMH) was established on the occasion of a meeting of the Swiss Mathematical Society in May 1928. The first volume was published in 1929. The journal soon gained international reputation and is one of the world''s leading mathematical periodicals. Commentarii Mathematici Helvetici is covered in: Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信