基于随机梯度粗糙神经网络的水泥回转窑多输入多输出非线性系统辨识

Gh. Ahmadi, M. Teshnelab
{"title":"基于随机梯度粗糙神经网络的水泥回转窑多输入多输出非线性系统辨识","authors":"Gh. Ahmadi, M. Teshnelab","doi":"10.22044/JADM.2020.8865.2021","DOIUrl":null,"url":null,"abstract":"Because of the existing interactions among the variables of a multiple input-multiple output (MIMO) nonlinear system, its identification is a difficult task, particularly in the presence of uncertainties. Cement rotary kiln (CRK) is a MIMO nonlinear system in the cement factory with a complicated mechanism and uncertain disturbances. The identification of CRK is very important for different purposes such as prediction, fault detection, and control. In the previous works, CRK was identified after decomposing it into several multiple input-single output (MISO) systems. In this paper, for the first time, the rough-neural network (R-NN) is utilized for the identification of CRK without the usage of MISO structures. R-NN is a neural structure designed on the base of rough set theory for dealing with the uncertainty and vagueness. In addition, a stochastic gradient descent learning algorithm is proposed for training the R-NNs. The simulation results show the effectiveness of proposed methodology.","PeriodicalId":32592,"journal":{"name":"Journal of Artificial Intelligence and Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of Multiple Input-multiple Output Non-linear System Cement Rotary Kiln using Stochastic Gradient-based Rough-neural Network\",\"authors\":\"Gh. Ahmadi, M. Teshnelab\",\"doi\":\"10.22044/JADM.2020.8865.2021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Because of the existing interactions among the variables of a multiple input-multiple output (MIMO) nonlinear system, its identification is a difficult task, particularly in the presence of uncertainties. Cement rotary kiln (CRK) is a MIMO nonlinear system in the cement factory with a complicated mechanism and uncertain disturbances. The identification of CRK is very important for different purposes such as prediction, fault detection, and control. In the previous works, CRK was identified after decomposing it into several multiple input-single output (MISO) systems. In this paper, for the first time, the rough-neural network (R-NN) is utilized for the identification of CRK without the usage of MISO structures. R-NN is a neural structure designed on the base of rough set theory for dealing with the uncertainty and vagueness. In addition, a stochastic gradient descent learning algorithm is proposed for training the R-NNs. The simulation results show the effectiveness of proposed methodology.\",\"PeriodicalId\":32592,\"journal\":{\"name\":\"Journal of Artificial Intelligence and Data Mining\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial Intelligence and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22044/JADM.2020.8865.2021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22044/JADM.2020.8865.2021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于多输入多输出(MIMO)非线性系统的变量之间存在相互作用,其识别是一项困难的任务,特别是在存在不确定性的情况下。水泥回转窑(CRK)是水泥厂中一个多输入多输出非线性系统,具有复杂的机理和不确定的扰动。CRK的识别对于预测、故障检测和控制等不同目的非常重要。在以前的工作中,CRK是在将其分解为几个多输入单输出(MISO)系统后识别的。本文首次在不使用MISO结构的情况下,将粗糙神经网络(R-NN)用于CRK的识别。R-NN是一种基于粗糙集理论设计的用于处理不确定性和模糊性的神经结构。此外,还提出了一种随机梯度下降学习算法来训练R-NN。仿真结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of Multiple Input-multiple Output Non-linear System Cement Rotary Kiln using Stochastic Gradient-based Rough-neural Network
Because of the existing interactions among the variables of a multiple input-multiple output (MIMO) nonlinear system, its identification is a difficult task, particularly in the presence of uncertainties. Cement rotary kiln (CRK) is a MIMO nonlinear system in the cement factory with a complicated mechanism and uncertain disturbances. The identification of CRK is very important for different purposes such as prediction, fault detection, and control. In the previous works, CRK was identified after decomposing it into several multiple input-single output (MISO) systems. In this paper, for the first time, the rough-neural network (R-NN) is utilized for the identification of CRK without the usage of MISO structures. R-NN is a neural structure designed on the base of rough set theory for dealing with the uncertainty and vagueness. In addition, a stochastic gradient descent learning algorithm is proposed for training the R-NNs. The simulation results show the effectiveness of proposed methodology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信