关于阿贝尔$$\ell$$ℓ -多图塔III

IF 0.5 Q3 MATHEMATICS
Kevin McGown, Daniel Vallières
{"title":"关于阿贝尔$$\\ell$$ℓ -多图塔III","authors":"Kevin McGown,&nbsp;Daniel Vallières","doi":"10.1007/s40316-022-00194-w","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\ell \\)</span> be a rational prime. Previously, abelian <span>\\(\\ell \\)</span>-towers of multigraphs were introduced which are analogous to <span>\\(\\mathbb {Z}_{\\ell }\\)</span>-extensions of number fields. It was shown that for towers of bouquets, the growth of the <span>\\(\\ell \\)</span>-part of the number of spanning trees behaves in a predictable manner (analogous to a well-known theorem of Iwasawa for <span>\\(\\mathbb {Z}_{\\ell }\\)</span>-extensions of number fields). In this paper, we extend this result to abelian <span>\\(\\ell \\)</span>-towers over an arbitrary connected multigraph (not necessarily simple and not necessarily regular). In order to carry this out, we employ integer-valued polynomials to construct power series with coefficients in <span>\\(\\mathbb {Z}_\\ell \\)</span> arising from cyclotomic number fields, different than the power series appearing in the prequel. This allows us to study the special value at <span>\\(u=1\\)</span> of the Artin–Ihara <i>L</i>-function, when the base multigraph is not necessarily a bouquet.</p></div>","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"48 1","pages":"1 - 19"},"PeriodicalIF":0.5000,"publicationDate":"2022-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On abelian \\\\(\\\\ell \\\\)-towers of multigraphs III\",\"authors\":\"Kevin McGown,&nbsp;Daniel Vallières\",\"doi\":\"10.1007/s40316-022-00194-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(\\\\ell \\\\)</span> be a rational prime. Previously, abelian <span>\\\\(\\\\ell \\\\)</span>-towers of multigraphs were introduced which are analogous to <span>\\\\(\\\\mathbb {Z}_{\\\\ell }\\\\)</span>-extensions of number fields. It was shown that for towers of bouquets, the growth of the <span>\\\\(\\\\ell \\\\)</span>-part of the number of spanning trees behaves in a predictable manner (analogous to a well-known theorem of Iwasawa for <span>\\\\(\\\\mathbb {Z}_{\\\\ell }\\\\)</span>-extensions of number fields). In this paper, we extend this result to abelian <span>\\\\(\\\\ell \\\\)</span>-towers over an arbitrary connected multigraph (not necessarily simple and not necessarily regular). In order to carry this out, we employ integer-valued polynomials to construct power series with coefficients in <span>\\\\(\\\\mathbb {Z}_\\\\ell \\\\)</span> arising from cyclotomic number fields, different than the power series appearing in the prequel. This allows us to study the special value at <span>\\\\(u=1\\\\)</span> of the Artin–Ihara <i>L</i>-function, when the base multigraph is not necessarily a bouquet.</p></div>\",\"PeriodicalId\":42753,\"journal\":{\"name\":\"Annales Mathematiques du Quebec\",\"volume\":\"48 1\",\"pages\":\"1 - 19\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematiques du Quebec\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40316-022-00194-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematiques du Quebec","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40316-022-00194-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 \(\ell \) 是一个有理素数。在此之前,人们提出了多图的((ell ell ell ell))无边塔,它类似于数域的(((mathbb {Z}_{\ell }\ ))扩展。研究表明,对于花束塔,生成树数的\(\ell \)-部分的增长是以一种可预测的方式进行的(类似于岩泽(Iwasawa)关于数域的\(\mathbb {Z}_{\ell }\) -扩展的著名定理)。在本文中,我们将这一结果扩展到任意连通多图(不一定是简单的,也不一定是规则的)上的无边际(\ell \)塔。为了实现这一点,我们采用了整值多项式来构造系数在(\mathbb {Z}_\ell \)中的幂级数,这些幂级数产生于循环数域,与前传中出现的幂级数不同。这使得我们可以研究当基多图不一定是花束时,阿尔丁-伊哈拉 L 函数在 \(u=1\) 处的特殊值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On abelian \(\ell \)-towers of multigraphs III

Let \(\ell \) be a rational prime. Previously, abelian \(\ell \)-towers of multigraphs were introduced which are analogous to \(\mathbb {Z}_{\ell }\)-extensions of number fields. It was shown that for towers of bouquets, the growth of the \(\ell \)-part of the number of spanning trees behaves in a predictable manner (analogous to a well-known theorem of Iwasawa for \(\mathbb {Z}_{\ell }\)-extensions of number fields). In this paper, we extend this result to abelian \(\ell \)-towers over an arbitrary connected multigraph (not necessarily simple and not necessarily regular). In order to carry this out, we employ integer-valued polynomials to construct power series with coefficients in \(\mathbb {Z}_\ell \) arising from cyclotomic number fields, different than the power series appearing in the prequel. This allows us to study the special value at \(u=1\) of the Artin–Ihara L-function, when the base multigraph is not necessarily a bouquet.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
19
期刊介绍: The goal of the Annales mathématiques du Québec (formerly: Annales des sciences mathématiques du Québec) is to be a high level journal publishing articles in all areas of pure mathematics, and sometimes in related fields such as applied mathematics, mathematical physics and computer science. Papers written in French or English may be submitted to one of the editors, and each published paper will appear with a short abstract in both languages. History: The journal was founded in 1977 as „Annales des sciences mathématiques du Québec”, in 2013 it became a Springer journal under the name of “Annales mathématiques du Québec”. From 1977 to 2018, the editors-in-chief have respectively been S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea. Les Annales mathématiques du Québec (anciennement, les Annales des sciences mathématiques du Québec) se veulent un journal de haut calibre publiant des travaux dans toutes les sphères des mathématiques pures, et parfois dans des domaines connexes tels les mathématiques appliquées, la physique mathématique et l''informatique. On peut soumettre ses articles en français ou en anglais à l''éditeur de son choix, et les articles acceptés seront publiés avec un résumé court dans les deux langues. Histoire: La revue québécoise “Annales des sciences mathématiques du Québec” était fondée en 1977 et est devenue en 2013 une revue de Springer sous le nom Annales mathématiques du Québec. De 1977 à 2018, les éditeurs en chef ont respectivement été S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信