全局函数域上的多个ζ函数和多对数

IF 0.3 4区 数学 Q4 MATHEMATICS
Debmalya Basak, Nicolas Degré-Pelletier, M. Lalín
{"title":"全局函数域上的多个ζ函数和多对数","authors":"Debmalya Basak, Nicolas Degré-Pelletier, M. Lalín","doi":"10.5802/jtnb.1128","DOIUrl":null,"url":null,"abstract":". In [Tha04] Thakur defines function field analogs of the classical multiple zeta function, namely, ζ d ( F q [ T ]; s 1 ,...,s d ) and ζ d ( K ; s 1 ,...,s d ), where K is a global function field. Star versions of these functions were further studied by Masri [Mas06]. We prove reduction formulas for these star functions, extend the construction to function field analogs of multiple polylogarithms, and exhibit some formulas for multiple zeta values.","PeriodicalId":48896,"journal":{"name":"Journal De Theorie Des Nombres De Bordeaux","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2020-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple zeta functions and polylogarithms over global function fields\",\"authors\":\"Debmalya Basak, Nicolas Degré-Pelletier, M. Lalín\",\"doi\":\"10.5802/jtnb.1128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In [Tha04] Thakur defines function field analogs of the classical multiple zeta function, namely, ζ d ( F q [ T ]; s 1 ,...,s d ) and ζ d ( K ; s 1 ,...,s d ), where K is a global function field. Star versions of these functions were further studied by Masri [Mas06]. We prove reduction formulas for these star functions, extend the construction to function field analogs of multiple polylogarithms, and exhibit some formulas for multiple zeta values.\",\"PeriodicalId\":48896,\"journal\":{\"name\":\"Journal De Theorie Des Nombres De Bordeaux\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal De Theorie Des Nombres De Bordeaux\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/jtnb.1128\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Theorie Des Nombres De Bordeaux","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/jtnb.1128","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在[Ta04]中,Thakur定义了经典多重ζ函数的函数场类似物,即ζd(Fq[T];s1,…,sd)和ζd(K;s1,..,sd),其中K是全局函数场。Masri[Mas06]进一步研究了这些函数的星形版本。我们证明了这些星形函数的归约公式,将构造扩展到多个多对数的函数场类似物,并展示了一些多个ζ值的公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple zeta functions and polylogarithms over global function fields
. In [Tha04] Thakur defines function field analogs of the classical multiple zeta function, namely, ζ d ( F q [ T ]; s 1 ,...,s d ) and ζ d ( K ; s 1 ,...,s d ), where K is a global function field. Star versions of these functions were further studied by Masri [Mas06]. We prove reduction formulas for these star functions, extend the construction to function field analogs of multiple polylogarithms, and exhibit some formulas for multiple zeta values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
35
期刊介绍: The Journal de Théorie des Nombres de Bordeaux publishes original papers on number theory and related topics (not published elsewhere).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信