{"title":"高维基因表达数据的不平衡分类模拟研究","authors":"Masithoh Yessi Rochayani, U. Sa’adah, A. Astuti","doi":"10.15294/sji.v10i1.40589","DOIUrl":null,"url":null,"abstract":"Purpose: Classification of gene expression helps study disease. However, it faces two obstacles: an imbalanced class and a high dimension. The motivation of this study is to examine the effectiveness of undersampling before feature selection on high-dimensional data with imbalanced classes.Methods: Least Absolute Shrinkage and Selection Operator (Lasso), which can select features, can handle high-dimensional data modeling. Random undersampling (RUS) can be used to deal with imbalanced classes. The Classification and Decision Tree (CART) algorithm is used to construct a classification model because it can produce an interpretable model. Thirty simulated datasets with varying imbalance ratios are used to test the proposed approaches, which are Lasso-CART and RUS-Lasso-CART. The simulated data are generated from parameters of real gene expression data.Results: The simulation study results show that when the minority class accounts for more than 25% of the observation size, the Lasso-CART method is appropriate. Meanwhile, RUS-Lasso-CART is effective when the minority class size is at least 20 observations.Novelty: The novelty of this simulation study is using the RUS-Lasso-CART hybrid method to address the classification problem of high-dimensional gene expression data with imbalanced classes.","PeriodicalId":30781,"journal":{"name":"Scientific Journal of Informatics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation Study of Imbalanced Classification on High-Dimensional Gene Expression Data\",\"authors\":\"Masithoh Yessi Rochayani, U. Sa’adah, A. Astuti\",\"doi\":\"10.15294/sji.v10i1.40589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose: Classification of gene expression helps study disease. However, it faces two obstacles: an imbalanced class and a high dimension. The motivation of this study is to examine the effectiveness of undersampling before feature selection on high-dimensional data with imbalanced classes.Methods: Least Absolute Shrinkage and Selection Operator (Lasso), which can select features, can handle high-dimensional data modeling. Random undersampling (RUS) can be used to deal with imbalanced classes. The Classification and Decision Tree (CART) algorithm is used to construct a classification model because it can produce an interpretable model. Thirty simulated datasets with varying imbalance ratios are used to test the proposed approaches, which are Lasso-CART and RUS-Lasso-CART. The simulated data are generated from parameters of real gene expression data.Results: The simulation study results show that when the minority class accounts for more than 25% of the observation size, the Lasso-CART method is appropriate. Meanwhile, RUS-Lasso-CART is effective when the minority class size is at least 20 observations.Novelty: The novelty of this simulation study is using the RUS-Lasso-CART hybrid method to address the classification problem of high-dimensional gene expression data with imbalanced classes.\",\"PeriodicalId\":30781,\"journal\":{\"name\":\"Scientific Journal of Informatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Journal of Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15294/sji.v10i1.40589\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Journal of Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15294/sji.v10i1.40589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simulation Study of Imbalanced Classification on High-Dimensional Gene Expression Data
Purpose: Classification of gene expression helps study disease. However, it faces two obstacles: an imbalanced class and a high dimension. The motivation of this study is to examine the effectiveness of undersampling before feature selection on high-dimensional data with imbalanced classes.Methods: Least Absolute Shrinkage and Selection Operator (Lasso), which can select features, can handle high-dimensional data modeling. Random undersampling (RUS) can be used to deal with imbalanced classes. The Classification and Decision Tree (CART) algorithm is used to construct a classification model because it can produce an interpretable model. Thirty simulated datasets with varying imbalance ratios are used to test the proposed approaches, which are Lasso-CART and RUS-Lasso-CART. The simulated data are generated from parameters of real gene expression data.Results: The simulation study results show that when the minority class accounts for more than 25% of the observation size, the Lasso-CART method is appropriate. Meanwhile, RUS-Lasso-CART is effective when the minority class size is at least 20 observations.Novelty: The novelty of this simulation study is using the RUS-Lasso-CART hybrid method to address the classification problem of high-dimensional gene expression data with imbalanced classes.