评估用于互补性自动检测的信号类型

J. W. C. Souza, Ariani Di Felippo
{"title":"评估用于互补性自动检测的信号类型","authors":"J. W. C. Souza, Ariani Di Felippo","doi":"10.14393/dl52-v16n4a2022-10","DOIUrl":null,"url":null,"abstract":"In a cluster of news texts on the same event, two sentences from different documents might express different multi-document phenomena (redundancy, complementarity, and contradiction). Cross-Document Structure Theory (CST) provides labels to explicitly represent these phenomena. The automatic identification of the multi-document phenomena and their correspondent CST relations is definitely handy for Automatic Multi-Document Summarization since it helps computers understand text meaning. In this paper, we evaluated a typology of (textual) signals for the automatic detection of the CST relations of complementarity (i.e., Historical background, Follow-up and Elaboration) in a multi-document corpus of news texts in Brazilian Portuguese. Using algorithms from different machine-learning paradigms, we obtained classifiers that achieved high general accuracy (higher than 90%), indicating the potential of the signals.","PeriodicalId":53262,"journal":{"name":"Dominios de Lingugem","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating a typology of signals for automatic detection of complementarity\",\"authors\":\"J. W. C. Souza, Ariani Di Felippo\",\"doi\":\"10.14393/dl52-v16n4a2022-10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a cluster of news texts on the same event, two sentences from different documents might express different multi-document phenomena (redundancy, complementarity, and contradiction). Cross-Document Structure Theory (CST) provides labels to explicitly represent these phenomena. The automatic identification of the multi-document phenomena and their correspondent CST relations is definitely handy for Automatic Multi-Document Summarization since it helps computers understand text meaning. In this paper, we evaluated a typology of (textual) signals for the automatic detection of the CST relations of complementarity (i.e., Historical background, Follow-up and Elaboration) in a multi-document corpus of news texts in Brazilian Portuguese. Using algorithms from different machine-learning paradigms, we obtained classifiers that achieved high general accuracy (higher than 90%), indicating the potential of the signals.\",\"PeriodicalId\":53262,\"journal\":{\"name\":\"Dominios de Lingugem\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dominios de Lingugem\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14393/dl52-v16n4a2022-10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dominios de Lingugem","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14393/dl52-v16n4a2022-10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在同一事件的一组新闻文本中,来自不同文档的两个句子可能表达不同的多文档现象(冗余、互补和矛盾)。跨文档结构理论(CST)提供了明确表示这些现象的标签。多文档现象及其对应的CST关系的自动识别对于多文档自动摘要来说是非常方便的,因为它可以帮助计算机理解文本的含义。在本文中,我们评估了一种用于自动检测巴西葡萄牙语新闻文本多文档语料库中互补性CST关系(即历史背景,后续和阐述)的(文本)信号类型。使用来自不同机器学习范式的算法,我们获得了具有较高一般精度(高于90%)的分类器,这表明了信号的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating a typology of signals for automatic detection of complementarity
In a cluster of news texts on the same event, two sentences from different documents might express different multi-document phenomena (redundancy, complementarity, and contradiction). Cross-Document Structure Theory (CST) provides labels to explicitly represent these phenomena. The automatic identification of the multi-document phenomena and their correspondent CST relations is definitely handy for Automatic Multi-Document Summarization since it helps computers understand text meaning. In this paper, we evaluated a typology of (textual) signals for the automatic detection of the CST relations of complementarity (i.e., Historical background, Follow-up and Elaboration) in a multi-document corpus of news texts in Brazilian Portuguese. Using algorithms from different machine-learning paradigms, we obtained classifiers that achieved high general accuracy (higher than 90%), indicating the potential of the signals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
49
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信