强椭圆算子与算子李代数的求幂

Pub Date : 2021-08-31 DOI:10.7146/math.scand.a-126020
Rodrigo A. H. M. Cabral
{"title":"强椭圆算子与算子李代数的求幂","authors":"Rodrigo A. H. M. Cabral","doi":"10.7146/math.scand.a-126020","DOIUrl":null,"url":null,"abstract":"An intriguing feature which is often present in theorems regardingthe exponentiation of Lie algebras of unbounded linear operators onBanach spaces is the assumption of hypotheses on the Laplacianoperator associated with a basis of the operator Lie algebra.The main objective of this work is to show that one can substitutethe Laplacian by an arbitrary operator in the enveloping algebra andstill obtain exponentiation, as long as its closure generates astrongly continuous one-parameter semigroup satisfying certain normestimates, which are typical in the theory of strongly ellipticoperators.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strongly elliptic operators and exponentiation of operator Lie algebras\",\"authors\":\"Rodrigo A. H. M. Cabral\",\"doi\":\"10.7146/math.scand.a-126020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An intriguing feature which is often present in theorems regardingthe exponentiation of Lie algebras of unbounded linear operators onBanach spaces is the assumption of hypotheses on the Laplacianoperator associated with a basis of the operator Lie algebra.The main objective of this work is to show that one can substitutethe Laplacian by an arbitrary operator in the enveloping algebra andstill obtain exponentiation, as long as its closure generates astrongly continuous one-parameter semigroup satisfying certain normestimates, which are typical in the theory of strongly ellipticoperators.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7146/math.scand.a-126020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-126020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

关于banach空间上无界线性算子李代数求幂的定理中经常出现的一个有趣的特征是对与算子李代数的基相关的拉普拉斯算子的假设假设。本文的主要目的是证明可以用包络代数中的任意算子代替拉普拉斯算子,只要它的闭包产生一个满足一定范数估计的强连续单参数半群,这在强椭圆算子理论中是典型的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Strongly elliptic operators and exponentiation of operator Lie algebras
An intriguing feature which is often present in theorems regardingthe exponentiation of Lie algebras of unbounded linear operators onBanach spaces is the assumption of hypotheses on the Laplacianoperator associated with a basis of the operator Lie algebra.The main objective of this work is to show that one can substitutethe Laplacian by an arbitrary operator in the enveloping algebra andstill obtain exponentiation, as long as its closure generates astrongly continuous one-parameter semigroup satisfying certain normestimates, which are typical in the theory of strongly ellipticoperators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信