Dražen Kurtanjek, Damir Bucković, D. Tibljaš, B. Cvetko Tešović
{"title":"帕格岛上白垩纪/始新世早期序列中复杂角砾岩体的起源(克罗地亚喀斯特二元区):岩溶溶解和坍塌还是扩张断层作用和坍塌起源?","authors":"Dražen Kurtanjek, Damir Bucković, D. Tibljaš, B. Cvetko Tešović","doi":"10.4154/gc.2022.15","DOIUrl":null,"url":null,"abstract":"A kilometre west of Pag Town on Pag Island, Croatia, within the Upper Cretaceous shallow-water carbonate succession, there is a large breccia body that has an irregular, quasi-circular shape and a subvertical-oblique position in relation to the bedding of the host rock. The breccia clasts and fragments consist almost entirely of the Upper Cretaceous host rock with only sporadic clasts of the Lower Eocene foraminiferal (alveolinid) limestones. In the brecciated body, there are three breccia types. 1) crackle breccia, 2) mosaic breccia, and 3) chaotic breccia. Based on the textural and structural characteristics of these types of breccia such as chaotic appearance and random fabric, very poorly sorted material, angular fragments, the composition reflecting only the host rock lithology, two genetic scenarios or concepts for the origin of Pag Town breccia body were considered, with observations supporting each of them. The first concept involves host rock dissolution resulting in a widened dissolution cavity into which wall and roof rocks progressively collapsed, and the second concept involves the collapse of voids produced by dilational fault displacement. A common prerequisite to both opposing scenarios is the existence of a subsurface cavity or void where the accumulation of rock clasts and fragments occurred. It is assumed that the timing of the cavity formation is related mainly to karstification during the Late Cretaceous-Early Eocene emersion phase or is related to dilational faulting during the Palaeogene Dinarides thrusting event.","PeriodicalId":55108,"journal":{"name":"Geologia Croatica","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The origin of a complex breccia body within the Upper Cretaceous/Early Eocene succession on Pag Island (Karst Dinarides, Croatia): karstic dissolution and collapse or dilational faulting and collapse origin?\",\"authors\":\"Dražen Kurtanjek, Damir Bucković, D. Tibljaš, B. Cvetko Tešović\",\"doi\":\"10.4154/gc.2022.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A kilometre west of Pag Town on Pag Island, Croatia, within the Upper Cretaceous shallow-water carbonate succession, there is a large breccia body that has an irregular, quasi-circular shape and a subvertical-oblique position in relation to the bedding of the host rock. The breccia clasts and fragments consist almost entirely of the Upper Cretaceous host rock with only sporadic clasts of the Lower Eocene foraminiferal (alveolinid) limestones. In the brecciated body, there are three breccia types. 1) crackle breccia, 2) mosaic breccia, and 3) chaotic breccia. Based on the textural and structural characteristics of these types of breccia such as chaotic appearance and random fabric, very poorly sorted material, angular fragments, the composition reflecting only the host rock lithology, two genetic scenarios or concepts for the origin of Pag Town breccia body were considered, with observations supporting each of them. The first concept involves host rock dissolution resulting in a widened dissolution cavity into which wall and roof rocks progressively collapsed, and the second concept involves the collapse of voids produced by dilational fault displacement. A common prerequisite to both opposing scenarios is the existence of a subsurface cavity or void where the accumulation of rock clasts and fragments occurred. It is assumed that the timing of the cavity formation is related mainly to karstification during the Late Cretaceous-Early Eocene emersion phase or is related to dilational faulting during the Palaeogene Dinarides thrusting event.\",\"PeriodicalId\":55108,\"journal\":{\"name\":\"Geologia Croatica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geologia Croatica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.4154/gc.2022.15\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geologia Croatica","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.4154/gc.2022.15","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOLOGY","Score":null,"Total":0}
The origin of a complex breccia body within the Upper Cretaceous/Early Eocene succession on Pag Island (Karst Dinarides, Croatia): karstic dissolution and collapse or dilational faulting and collapse origin?
A kilometre west of Pag Town on Pag Island, Croatia, within the Upper Cretaceous shallow-water carbonate succession, there is a large breccia body that has an irregular, quasi-circular shape and a subvertical-oblique position in relation to the bedding of the host rock. The breccia clasts and fragments consist almost entirely of the Upper Cretaceous host rock with only sporadic clasts of the Lower Eocene foraminiferal (alveolinid) limestones. In the brecciated body, there are three breccia types. 1) crackle breccia, 2) mosaic breccia, and 3) chaotic breccia. Based on the textural and structural characteristics of these types of breccia such as chaotic appearance and random fabric, very poorly sorted material, angular fragments, the composition reflecting only the host rock lithology, two genetic scenarios or concepts for the origin of Pag Town breccia body were considered, with observations supporting each of them. The first concept involves host rock dissolution resulting in a widened dissolution cavity into which wall and roof rocks progressively collapsed, and the second concept involves the collapse of voids produced by dilational fault displacement. A common prerequisite to both opposing scenarios is the existence of a subsurface cavity or void where the accumulation of rock clasts and fragments occurred. It is assumed that the timing of the cavity formation is related mainly to karstification during the Late Cretaceous-Early Eocene emersion phase or is related to dilational faulting during the Palaeogene Dinarides thrusting event.
期刊介绍:
Geologia Croatica welcomes original scientific papers dealing with diverse aspects of geology and geological engineering, the history of the Earth, and the physical changes that the Earth has undergone or it is undergoing. The Journal covers a wide spectrum of geology disciplines (palaeontology, stratigraphy, mineralogy, sedimentology, petrology, geochemistry, structural geology, karstology, hydrogeology and engineering geology) including pedogenesis, petroleum geology and environmental geology.
Papers especially concerning the Pannonian Basin, Dinarides, the Adriatic/Mediterranean region, as well as notes and reviews interesting to a wider audience (e.g. review papers, book reviews, and notes) are welcome.