在k-Fibonacci和k-Lucas旋量上

IF 0.4 Q4 MATHEMATICS
Munesh Kumari, K. Prasad, R. Frontczak
{"title":"在k-Fibonacci和k-Lucas旋量上","authors":"Munesh Kumari, K. Prasad, R. Frontczak","doi":"10.7546/nntdm.2023.29.2.322-335","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a new family of sequences called the k-Fibonacci and k-Lucas spinors. Starting with the Binet formulas we present their basic properties, such as Cassini’s identity, Catalan’s identity, d’Ocagne’s identity, Vajda’s identity, and Honsberger’s identity. In addition, we discuss their generating functions. Finally, we obtain sum formulae and relations between k-Fibonacci and k-Lucas spinors.","PeriodicalId":44060,"journal":{"name":"Notes on Number Theory and Discrete Mathematics","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On the k-Fibonacci and k-Lucas spinors\",\"authors\":\"Munesh Kumari, K. Prasad, R. Frontczak\",\"doi\":\"10.7546/nntdm.2023.29.2.322-335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a new family of sequences called the k-Fibonacci and k-Lucas spinors. Starting with the Binet formulas we present their basic properties, such as Cassini’s identity, Catalan’s identity, d’Ocagne’s identity, Vajda’s identity, and Honsberger’s identity. In addition, we discuss their generating functions. Finally, we obtain sum formulae and relations between k-Fibonacci and k-Lucas spinors.\",\"PeriodicalId\":44060,\"journal\":{\"name\":\"Notes on Number Theory and Discrete Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Notes on Number Theory and Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/nntdm.2023.29.2.322-335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notes on Number Theory and Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/nntdm.2023.29.2.322-335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们引入了一个新的序列族,称为k-Fibonacci和k-Lucas旋量。从比奈公式开始,我们给出了它们的基本性质,如卡西尼恒等式、加泰罗尼亚语恒等式、奥卡涅恒等式、瓦伊达恒等式和洪斯伯格恒等式。此外,我们还讨论了它们的生成函数。最后,我们得到了k-Fibonacci和k-Lucas旋量的和公式及它们之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the k-Fibonacci and k-Lucas spinors
In this paper, we introduce a new family of sequences called the k-Fibonacci and k-Lucas spinors. Starting with the Binet formulas we present their basic properties, such as Cassini’s identity, Catalan’s identity, d’Ocagne’s identity, Vajda’s identity, and Honsberger’s identity. In addition, we discuss their generating functions. Finally, we obtain sum formulae and relations between k-Fibonacci and k-Lucas spinors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
33.30%
发文量
71
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信