新西兰惠灵顿市地震后火灾风险评估

IF 0.8 Q4 ENGINEERING, GEOLOGICAL
F. Scheele, B. Lukovic, J. Moratalla, A. Dunant, N. Horspool
{"title":"新西兰惠灵顿市地震后火灾风险评估","authors":"F. Scheele, B. Lukovic, J. Moratalla, A. Dunant, N. Horspool","doi":"10.5459/bnzsee.55.4.241-256","DOIUrl":null,"url":null,"abstract":"Fire following earthquake (FFE) is a significant hazard in urban areas subject to high seismicity. Wellington City has many characteristics that make it susceptible to ignitions and fire spread. These include proximity to major active faults, closely spaced timber-clad buildings, vulnerable water and gas infrastructure, frequent high winds and challenging access for emergency services. We modelled the ignitions, fire spread and suppression for five earthquake sources. Uncertainty in ground motions, the number and location of ignitions, weather conditions and firefighting capacity were accounted for. The mean loss per burn zone (area burnt due to ignition and fire spread) is $46m without fire suppression, indicating the potential property damage avoided by controlling the fire spread. The mean total loss for earthquake scenarios ranges from $0.28b for the Wairau Fault through to $3.17b for a Hikurangi Subduction Zone scenario, including the influence of fire suppression. Wind speed has a strong influence on the potential losses for each simulation and is a more significant factor than the number of ignitions for evaluating losses. Areas in Wellington City of relatively high risk are identified, which may inform risk mitigation strategies. The models may be applied to other urban areas.","PeriodicalId":46396,"journal":{"name":"Bulletin of the New Zealand Society for Earthquake Engineering","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating fire following earthquake risk for Wellington City, New Zealand\",\"authors\":\"F. Scheele, B. Lukovic, J. Moratalla, A. Dunant, N. Horspool\",\"doi\":\"10.5459/bnzsee.55.4.241-256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fire following earthquake (FFE) is a significant hazard in urban areas subject to high seismicity. Wellington City has many characteristics that make it susceptible to ignitions and fire spread. These include proximity to major active faults, closely spaced timber-clad buildings, vulnerable water and gas infrastructure, frequent high winds and challenging access for emergency services. We modelled the ignitions, fire spread and suppression for five earthquake sources. Uncertainty in ground motions, the number and location of ignitions, weather conditions and firefighting capacity were accounted for. The mean loss per burn zone (area burnt due to ignition and fire spread) is $46m without fire suppression, indicating the potential property damage avoided by controlling the fire spread. The mean total loss for earthquake scenarios ranges from $0.28b for the Wairau Fault through to $3.17b for a Hikurangi Subduction Zone scenario, including the influence of fire suppression. Wind speed has a strong influence on the potential losses for each simulation and is a more significant factor than the number of ignitions for evaluating losses. Areas in Wellington City of relatively high risk are identified, which may inform risk mitigation strategies. The models may be applied to other urban areas.\",\"PeriodicalId\":46396,\"journal\":{\"name\":\"Bulletin of the New Zealand Society for Earthquake Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the New Zealand Society for Earthquake Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5459/bnzsee.55.4.241-256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the New Zealand Society for Earthquake Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5459/bnzsee.55.4.241-256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

地震后火灾是城市高地震活动性地区的一种重大灾害。惠灵顿市有许多特点,使它容易起火和火势蔓延。这些因素包括靠近主要活动断层、间隔紧密的木质建筑、脆弱的水和天然气基础设施、频繁的大风以及难以获得紧急服务。我们模拟了五个震源的点火、火势蔓延和灭火过程。地面运动的不确定性、点火装置的数量和位置、天气条件和消防能力都被考虑在内。在不进行灭火的情况下,每个燃烧区(因着火和火势蔓延而燃烧的区域)的平均损失为4600万美元,这表明通过控制火势蔓延避免了潜在的财产损失。地震情景的平均总损失从Wairau断层的2.8亿美元到Hikurangi俯冲带情景的31.7亿美元不等,其中包括灭火的影响。风速对每个模拟的潜在损失有很强的影响,是评估损失的一个比点火次数更重要的因素。确定了惠灵顿市风险相对较高的地区,这可能为减轻风险战略提供信息。该模型可应用于其他城市地区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating fire following earthquake risk for Wellington City, New Zealand
Fire following earthquake (FFE) is a significant hazard in urban areas subject to high seismicity. Wellington City has many characteristics that make it susceptible to ignitions and fire spread. These include proximity to major active faults, closely spaced timber-clad buildings, vulnerable water and gas infrastructure, frequent high winds and challenging access for emergency services. We modelled the ignitions, fire spread and suppression for five earthquake sources. Uncertainty in ground motions, the number and location of ignitions, weather conditions and firefighting capacity were accounted for. The mean loss per burn zone (area burnt due to ignition and fire spread) is $46m without fire suppression, indicating the potential property damage avoided by controlling the fire spread. The mean total loss for earthquake scenarios ranges from $0.28b for the Wairau Fault through to $3.17b for a Hikurangi Subduction Zone scenario, including the influence of fire suppression. Wind speed has a strong influence on the potential losses for each simulation and is a more significant factor than the number of ignitions for evaluating losses. Areas in Wellington City of relatively high risk are identified, which may inform risk mitigation strategies. The models may be applied to other urban areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
17.60%
发文量
14
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信