不可分解模同构类型的Green Puig参数化的块精化

IF 0.5 4区 数学 Q3 MATHEMATICS
M. E. Harris
{"title":"不可分解模同构类型的Green Puig参数化的块精化","authors":"M. E. Harris","doi":"10.18910/72315","DOIUrl":null,"url":null,"abstract":"Let p be a prime integer, let  be a commutative complete local Noetherian ring with an algebraically closed residue field k of charateristic p and letG be a finite group. Let P be a p-subgroup of G and let X be an indecomposable P-module with vertex P. Let Λ(G, P, X) denote a set of representatives for the isomorphism classes of indecomposable G-modules with vertex-source pair (P, X) (so that Λ(G, P, X) is a finite set by the Green correspondence). As mentioned in [5, Notes on Section 26], L. Puig asserted that a defect multiplicity module determined by (P, X) can be used to obtain an extended parameterization of Λ(G, P, X). In [5, Proposition 26.3], J. Thévenaz completed this program under the hypotheses that X is -free. Here we use the methods of proof of [5, Theorem 26.3] to show that the -free hypothesis on X is superfluous. (M. Linckelmann has also proved this, cf. [3]). Let B be a block of G. Then we obtain a corresponding paramaterization of the (G)B-modules in Λ(G, P, X).","PeriodicalId":54660,"journal":{"name":"Osaka Journal of Mathematics","volume":"56 1","pages":"229-236"},"PeriodicalIF":0.5000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Block Refinement of the Green-Puig Parameterization of the Isomorphism Types of Indecomposable Modules\",\"authors\":\"M. E. Harris\",\"doi\":\"10.18910/72315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let p be a prime integer, let  be a commutative complete local Noetherian ring with an algebraically closed residue field k of charateristic p and letG be a finite group. Let P be a p-subgroup of G and let X be an indecomposable P-module with vertex P. Let Λ(G, P, X) denote a set of representatives for the isomorphism classes of indecomposable G-modules with vertex-source pair (P, X) (so that Λ(G, P, X) is a finite set by the Green correspondence). As mentioned in [5, Notes on Section 26], L. Puig asserted that a defect multiplicity module determined by (P, X) can be used to obtain an extended parameterization of Λ(G, P, X). In [5, Proposition 26.3], J. Thévenaz completed this program under the hypotheses that X is -free. Here we use the methods of proof of [5, Theorem 26.3] to show that the -free hypothesis on X is superfluous. (M. Linckelmann has also proved this, cf. [3]). Let B be a block of G. Then we obtain a corresponding paramaterization of the (G)B-modules in Λ(G, P, X).\",\"PeriodicalId\":54660,\"journal\":{\"name\":\"Osaka Journal of Mathematics\",\"volume\":\"56 1\",\"pages\":\"229-236\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Osaka Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.18910/72315\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Osaka Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/72315","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设p是素数,设 是具有特征p的代数闭余域k的交换完全局部Noetherian环,并且让G是有限群。设P是G的P-子群,设X是不可分解的设∧(G,P,X)表示不可分解同构类的一组表示具有顶点-源对(P,X)的G-模(使得∧(G,P,X)是Green对应关系的有限集)。如[5,第26节注释]中所述,L.Puig断言,由(P,X)确定的缺陷多重性模可用于获得∧(G,P,X)的扩展参数化。在[5],命题26.3]中,J.Thévenaz在假设X是-自由的在这里,我们使用[5],定理26.3]的证明方法来证明-关于X的自由假设是多余的。(M.Linckelmann也证明了这一点,参见[3])。设B是G.然后我们得到了(G) ∧(G,P,X)中的B-模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Block Refinement of the Green-Puig Parameterization of the Isomorphism Types of Indecomposable Modules
Let p be a prime integer, let  be a commutative complete local Noetherian ring with an algebraically closed residue field k of charateristic p and letG be a finite group. Let P be a p-subgroup of G and let X be an indecomposable P-module with vertex P. Let Λ(G, P, X) denote a set of representatives for the isomorphism classes of indecomposable G-modules with vertex-source pair (P, X) (so that Λ(G, P, X) is a finite set by the Green correspondence). As mentioned in [5, Notes on Section 26], L. Puig asserted that a defect multiplicity module determined by (P, X) can be used to obtain an extended parameterization of Λ(G, P, X). In [5, Proposition 26.3], J. Thévenaz completed this program under the hypotheses that X is -free. Here we use the methods of proof of [5, Theorem 26.3] to show that the -free hypothesis on X is superfluous. (M. Linckelmann has also proved this, cf. [3]). Let B be a block of G. Then we obtain a corresponding paramaterization of the (G)B-modules in Λ(G, P, X).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Osaka Journal of Mathematics is published quarterly by the joint editorship of the Department of Mathematics, Graduate School of Science, Osaka University, and the Department of Mathematics, Faculty of Science, Osaka City University and the Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University with the cooperation of the Department of Mathematical Sciences, Faculty of Engineering Science, Osaka University. The Journal is devoted entirely to the publication of original works in pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信