{"title":"有符号完全图的$k$-${rm-bf-{th}$谱矩","authors":"S. Dalvandi, F. Heydari, M. Maghasedi","doi":"10.22124/JART.2019.13670.1150","DOIUrl":null,"url":null,"abstract":"Let $Gamma=(G,sigma)$ be a signed graph, where $G$ is the underlying simple graph with at least one edge and $sigma : E(G) longrightarrow lbrace -,+rbrace$ is the sign function on the edges of $G$. In this paper, we study the $ k $-th spectral moment of $(K_n,sigma)$, for a signature $sigma$. Also, we obtain the number of negative cycles in a signed complete graph whose negative edges induce the disjoint union of two distinct complete bipartite graphs.","PeriodicalId":52302,"journal":{"name":"Journal of Algebra and Related Topics","volume":"7 1","pages":"35-44"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The $ k $-${rm bf{ th}}$ spectral moment of signed complete graphs\",\"authors\":\"S. Dalvandi, F. Heydari, M. Maghasedi\",\"doi\":\"10.22124/JART.2019.13670.1150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $Gamma=(G,sigma)$ be a signed graph, where $G$ is the underlying simple graph with at least one edge and $sigma : E(G) longrightarrow lbrace -,+rbrace$ is the sign function on the edges of $G$. In this paper, we study the $ k $-th spectral moment of $(K_n,sigma)$, for a signature $sigma$. Also, we obtain the number of negative cycles in a signed complete graph whose negative edges induce the disjoint union of two distinct complete bipartite graphs.\",\"PeriodicalId\":52302,\"journal\":{\"name\":\"Journal of Algebra and Related Topics\",\"volume\":\"7 1\",\"pages\":\"35-44\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra and Related Topics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22124/JART.2019.13670.1150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra and Related Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22124/JART.2019.13670.1150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
摘要
设$Gamma=(G,sigma)$是一个带符号的图,其中$G$是具有至少一条边的底层简单图,$sigma: E(G)长括号-,+括号$是$G$边上的符号函数。本文研究了一个签名$sigma$的$(K_n,sigma)$的$ k $-谱矩。同时,我们得到了负边诱导两个不同的完全二部图的不相交并的带符号完全图的负环数。
The $ k $-${rm bf{ th}}$ spectral moment of signed complete graphs
Let $Gamma=(G,sigma)$ be a signed graph, where $G$ is the underlying simple graph with at least one edge and $sigma : E(G) longrightarrow lbrace -,+rbrace$ is the sign function on the edges of $G$. In this paper, we study the $ k $-th spectral moment of $(K_n,sigma)$, for a signature $sigma$. Also, we obtain the number of negative cycles in a signed complete graph whose negative edges induce the disjoint union of two distinct complete bipartite graphs.