有符号完全图的$k$-${rm-bf-{th}$谱矩

Q4 Mathematics
S. Dalvandi, F. Heydari, M. Maghasedi
{"title":"有符号完全图的$k$-${rm-bf-{th}$谱矩","authors":"S. Dalvandi, F. Heydari, M. Maghasedi","doi":"10.22124/JART.2019.13670.1150","DOIUrl":null,"url":null,"abstract":"Let $Gamma=(G,sigma)$ be a signed graph, where $G$ is the underlying simple graph with at least one edge and $sigma : E(G) longrightarrow lbrace -,+rbrace$ is the sign function on the edges of $G$. In this paper, we study the $ k $-th spectral moment of $(K_n,sigma)$, for a signature $sigma$. Also, we obtain the number of negative cycles in a signed complete graph whose negative edges induce the disjoint union of two distinct complete bipartite graphs.","PeriodicalId":52302,"journal":{"name":"Journal of Algebra and Related Topics","volume":"7 1","pages":"35-44"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The $ k $-${rm bf{ th}}$ spectral moment of signed complete graphs\",\"authors\":\"S. Dalvandi, F. Heydari, M. Maghasedi\",\"doi\":\"10.22124/JART.2019.13670.1150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $Gamma=(G,sigma)$ be a signed graph, where $G$ is the underlying simple graph with at least one edge and $sigma : E(G) longrightarrow lbrace -,+rbrace$ is the sign function on the edges of $G$. In this paper, we study the $ k $-th spectral moment of $(K_n,sigma)$, for a signature $sigma$. Also, we obtain the number of negative cycles in a signed complete graph whose negative edges induce the disjoint union of two distinct complete bipartite graphs.\",\"PeriodicalId\":52302,\"journal\":{\"name\":\"Journal of Algebra and Related Topics\",\"volume\":\"7 1\",\"pages\":\"35-44\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra and Related Topics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22124/JART.2019.13670.1150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra and Related Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22124/JART.2019.13670.1150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

设$Gamma=(G,sigma)$是一个带符号的图,其中$G$是具有至少一条边的底层简单图,$sigma: E(G)长括号-,+括号$是$G$边上的符号函数。本文研究了一个签名$sigma$的$(K_n,sigma)$的$ k $-谱矩。同时,我们得到了负边诱导两个不同的完全二部图的不相交并的带符号完全图的负环数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The $ k $-${rm bf{ th}}$ spectral moment of signed complete graphs
Let $Gamma=(G,sigma)$ be a signed graph, where $G$ is the underlying simple graph with at least one edge and $sigma : E(G) longrightarrow lbrace -,+rbrace$ is the sign function on the edges of $G$. In this paper, we study the $ k $-th spectral moment of $(K_n,sigma)$, for a signature $sigma$. Also, we obtain the number of negative cycles in a signed complete graph whose negative edges induce the disjoint union of two distinct complete bipartite graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra and Related Topics
Journal of Algebra and Related Topics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信