利用电阻率层析成像监测混交林非饱和带土壤水分时空变化

IF 2.5 3区 地球科学 Q3 ENVIRONMENTAL SCIENCES
Julia S. Rieder, C. Kneisel
{"title":"利用电阻率层析成像监测混交林非饱和带土壤水分时空变化","authors":"Julia S. Rieder, C. Kneisel","doi":"10.1002/vzj2.20251","DOIUrl":null,"url":null,"abstract":"European forests are suffering considerably from the consequences of the droughts of recent years, and the exact reasons and influencing factors for this are still not fully understood. This study was conducted to characterize the changes and dynamics of soil moisture in a mixed forest in northern Bavaria within 1 year. Since electrical resistivity correlates well with soil water content, we used two‐dimensional electrical resistivity tomography (ERT) monitoring and time‐lapse analyses to supplement punctual measurements by sensors and soil analyses to show soil moisture changes throughout a whole year (2020–2021). While the topsoil dries out significantly from summer to autumn down to a depth of about 3 m, a clear increase in soil water content and a decrease in resistivity below 3 m can be observed during winter period. Anomalies in the topsoil (0–1 m) showing lower resistivities than the surrounding substrate could be related to tree positions by additional terrestrial laser scans. A significant relationship could be found between tree crown projection area and resistivity in 1–2 m depth. We found a trend that mean resistivity below pine is lower as below beech. ERT data were also used to estimate the soil water content via Archie's law and the results correlate strongly with the measured values, but the degree of correlation varies depending on the depth level. ERT as a noninvasive method, in combination with additional data, for example, on the vitality status of individual trees, could help to better understand root water uptake and water supply to trees, especially during periods of drought.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Monitoring spatiotemporal soil moisture variability in the unsaturated zone of a mixed forest using electrical resistivity tomography\",\"authors\":\"Julia S. Rieder, C. Kneisel\",\"doi\":\"10.1002/vzj2.20251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"European forests are suffering considerably from the consequences of the droughts of recent years, and the exact reasons and influencing factors for this are still not fully understood. This study was conducted to characterize the changes and dynamics of soil moisture in a mixed forest in northern Bavaria within 1 year. Since electrical resistivity correlates well with soil water content, we used two‐dimensional electrical resistivity tomography (ERT) monitoring and time‐lapse analyses to supplement punctual measurements by sensors and soil analyses to show soil moisture changes throughout a whole year (2020–2021). While the topsoil dries out significantly from summer to autumn down to a depth of about 3 m, a clear increase in soil water content and a decrease in resistivity below 3 m can be observed during winter period. Anomalies in the topsoil (0–1 m) showing lower resistivities than the surrounding substrate could be related to tree positions by additional terrestrial laser scans. A significant relationship could be found between tree crown projection area and resistivity in 1–2 m depth. We found a trend that mean resistivity below pine is lower as below beech. ERT data were also used to estimate the soil water content via Archie's law and the results correlate strongly with the measured values, but the degree of correlation varies depending on the depth level. ERT as a noninvasive method, in combination with additional data, for example, on the vitality status of individual trees, could help to better understand root water uptake and water supply to trees, especially during periods of drought.\",\"PeriodicalId\":23594,\"journal\":{\"name\":\"Vadose Zone Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vadose Zone Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/vzj2.20251\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vadose Zone Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/vzj2.20251","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 3

摘要

欧洲森林正遭受近年来干旱的严重影响,其确切原因和影响因素尚不完全清楚。本研究对巴伐利亚州北部一片混交林1年内土壤水分的变化和动态进行了表征。由于电阻率与土壤含水量密切相关,我们使用二维电阻率断层扫描(ERT)监测和时间推移分析来补充传感器和土壤分析的精确测量,以显示全年(2020-2021)的土壤湿度变化。从夏季到秋季,表层土的深度约为3米,表层土明显变干,但在冬季,土壤含水量明显增加,电阻率降至3米以下。表层土(0–1 m)电阻率低于周围基质的异常情况可能与额外的地面激光扫描的树木位置有关。树冠投影面积与1–2m深度的电阻率之间存在显著关系。我们发现,松树下的平均电阻率和山毛榉下的平均电阻一样低。ERT数据也被用于通过阿尔奇定律估计土壤含水量,结果与测量值密切相关,但相关程度因深度水平而异。ERT作为一种非侵入性方法,结合其他数据,例如关于单株树木活力状态的数据,可以帮助更好地了解根系吸水和树木供水,尤其是在干旱时期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monitoring spatiotemporal soil moisture variability in the unsaturated zone of a mixed forest using electrical resistivity tomography
European forests are suffering considerably from the consequences of the droughts of recent years, and the exact reasons and influencing factors for this are still not fully understood. This study was conducted to characterize the changes and dynamics of soil moisture in a mixed forest in northern Bavaria within 1 year. Since electrical resistivity correlates well with soil water content, we used two‐dimensional electrical resistivity tomography (ERT) monitoring and time‐lapse analyses to supplement punctual measurements by sensors and soil analyses to show soil moisture changes throughout a whole year (2020–2021). While the topsoil dries out significantly from summer to autumn down to a depth of about 3 m, a clear increase in soil water content and a decrease in resistivity below 3 m can be observed during winter period. Anomalies in the topsoil (0–1 m) showing lower resistivities than the surrounding substrate could be related to tree positions by additional terrestrial laser scans. A significant relationship could be found between tree crown projection area and resistivity in 1–2 m depth. We found a trend that mean resistivity below pine is lower as below beech. ERT data were also used to estimate the soil water content via Archie's law and the results correlate strongly with the measured values, but the degree of correlation varies depending on the depth level. ERT as a noninvasive method, in combination with additional data, for example, on the vitality status of individual trees, could help to better understand root water uptake and water supply to trees, especially during periods of drought.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Vadose Zone Journal
Vadose Zone Journal 环境科学-环境科学
CiteScore
5.60
自引率
7.10%
发文量
61
审稿时长
3.8 months
期刊介绍: Vadose Zone Journal is a unique publication outlet for interdisciplinary research and assessment of the vadose zone, the portion of the Critical Zone that comprises the Earth’s critical living surface down to groundwater. It is a peer-reviewed, international journal publishing reviews, original research, and special sections across a wide range of disciplines. Vadose Zone Journal reports fundamental and applied research from disciplinary and multidisciplinary investigations, including assessment and policy analyses, of the mostly unsaturated zone between the soil surface and the groundwater table. The goal is to disseminate information to facilitate science-based decision-making and sustainable management of the vadose zone. Examples of topic areas suitable for VZJ are variably saturated fluid flow, heat and solute transport in granular and fractured media, flow processes in the capillary fringe at or near the water table, water table management, regional and global climate change impacts on the vadose zone, carbon sequestration, design and performance of waste disposal facilities, long-term stewardship of contaminated sites in the vadose zone, biogeochemical transformation processes, microbial processes in shallow and deep formations, bioremediation, and the fate and transport of radionuclides, inorganic and organic chemicals, colloids, viruses, and microorganisms. Articles in VZJ also address yet-to-be-resolved issues, such as how to quantify heterogeneity of subsurface processes and properties, and how to couple physical, chemical, and biological processes across a range of spatial scales from the molecular to the global.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信