奇异势含时Schrödinger方程的Quasimode和Strichartz估计

Pub Date : 2020-11-08 DOI:10.4310/mrl.2022.v29.n3.a5
Xiaoqi Huang, C. Sogge
{"title":"奇异势含时Schrödinger方程的Quasimode和Strichartz估计","authors":"Xiaoqi Huang, C. Sogge","doi":"10.4310/mrl.2022.v29.n3.a5","DOIUrl":null,"url":null,"abstract":"We generalize the Strichartz estimates for Schrodinger operators on compact manifolds of Burq, Gerard and Tzvetkov [10] by allowing critically singular potentials $V$. Specifically, we show that their $1/p$--loss $L^p_tL^q_x(I\\times M)$-Strichartz estimates hold for $e^{-itH_V}$ when $H_V=-\\Delta_g+V(x)$ with $V\\in L^{n/2}(M)$ if $n\\ge3$ or $V\\in L^{1+\\delta}(M)$, $\\delta>0$, if $n=2$, with $(p,q)$ being as in the Keel-Tao theorem and $I\\subset {\\mathbb R}$ a bounded interval. We do this by formulating and proving new \"quasimode\" estimates for scaled dyadic unperturbed Schrodinger operators and taking advantage of the the fact that $1/q'-1/q=2/n$ for the endpoint Strichartz estimates when $(p,q)=(2,2n/(n-2))$. We also show that the universal quasimode estimates that we obtain are saturated on {\\em any} compact manifolds; however, we suggest that they may lend themselves to improved Strichartz estimates in certain geometries using recently developed \"Kakeya-Nikodym\" techniques developed to obtain improved eigenfunction estimates assuming, say, negative curvatures.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Quasimode and Strichartz estimates for time-dependent Schrödinger equations with singular potentials\",\"authors\":\"Xiaoqi Huang, C. Sogge\",\"doi\":\"10.4310/mrl.2022.v29.n3.a5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We generalize the Strichartz estimates for Schrodinger operators on compact manifolds of Burq, Gerard and Tzvetkov [10] by allowing critically singular potentials $V$. Specifically, we show that their $1/p$--loss $L^p_tL^q_x(I\\\\times M)$-Strichartz estimates hold for $e^{-itH_V}$ when $H_V=-\\\\Delta_g+V(x)$ with $V\\\\in L^{n/2}(M)$ if $n\\\\ge3$ or $V\\\\in L^{1+\\\\delta}(M)$, $\\\\delta>0$, if $n=2$, with $(p,q)$ being as in the Keel-Tao theorem and $I\\\\subset {\\\\mathbb R}$ a bounded interval. We do this by formulating and proving new \\\"quasimode\\\" estimates for scaled dyadic unperturbed Schrodinger operators and taking advantage of the the fact that $1/q'-1/q=2/n$ for the endpoint Strichartz estimates when $(p,q)=(2,2n/(n-2))$. We also show that the universal quasimode estimates that we obtain are saturated on {\\\\em any} compact manifolds; however, we suggest that they may lend themselves to improved Strichartz estimates in certain geometries using recently developed \\\"Kakeya-Nikodym\\\" techniques developed to obtain improved eigenfunction estimates assuming, say, negative curvatures.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/mrl.2022.v29.n3.a5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/mrl.2022.v29.n3.a5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

通过允许临界奇异势$V$,我们推广了Burq、Gerard和Tzvetkov[10]紧流形上薛定谔算子的Strichartz估计。特别地,我们证明了当$H_V=-\Delta_g+V(x)$时,当L^{n/2}(M)$中的$V\为$n\ge3$时,他们的$1/p$——损失$L^p_tL^q_x(I\乘以M)$-Strichartz估计对$e^{-itH_V}$成立,如果L^(1+\Delta)(M)中的$n\ge3$或$V\,如果$n=2$,$\Delta>0$,其中$(p,q)$与Keel-Tao定理中的一样,并且$I\subet{\mathbb R}$是有界的间隔。我们通过公式化和证明标度并矢无扰动薛定谔算子的新的“准模”估计,并利用当$(p,q)=(2,2n/(n-2))$时,Strichartz端点估计的$1/q'-1/q=2/n$这一事实来做到这一点。我们还证明了我们得到的泛拟模估计在{em-any}紧流形上是饱和的;然而,我们认为,它们可能有助于使用最近开发的“Kakeya-Nikodym”技术在某些几何结构中改进Strichartz估计,该技术是为了在假设负曲率的情况下获得改进的本征函数估计而开发的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Quasimode and Strichartz estimates for time-dependent Schrödinger equations with singular potentials
We generalize the Strichartz estimates for Schrodinger operators on compact manifolds of Burq, Gerard and Tzvetkov [10] by allowing critically singular potentials $V$. Specifically, we show that their $1/p$--loss $L^p_tL^q_x(I\times M)$-Strichartz estimates hold for $e^{-itH_V}$ when $H_V=-\Delta_g+V(x)$ with $V\in L^{n/2}(M)$ if $n\ge3$ or $V\in L^{1+\delta}(M)$, $\delta>0$, if $n=2$, with $(p,q)$ being as in the Keel-Tao theorem and $I\subset {\mathbb R}$ a bounded interval. We do this by formulating and proving new "quasimode" estimates for scaled dyadic unperturbed Schrodinger operators and taking advantage of the the fact that $1/q'-1/q=2/n$ for the endpoint Strichartz estimates when $(p,q)=(2,2n/(n-2))$. We also show that the universal quasimode estimates that we obtain are saturated on {\em any} compact manifolds; however, we suggest that they may lend themselves to improved Strichartz estimates in certain geometries using recently developed "Kakeya-Nikodym" techniques developed to obtain improved eigenfunction estimates assuming, say, negative curvatures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信