{"title":"深度学习方法和主题建模预测游客数量","authors":"Houria Laaroussi, F. Guerouate, M. Sbihi","doi":"10.32985/ijeces.14.4.5","DOIUrl":null,"url":null,"abstract":"Online review data attracts the attention of researchers and practitioners in various fields, but its application in tourism is still limited. The social media data can finely reflect tourist arrivals forecasting. Accurate prediction of tourist arrivals is essential for tourism decision-makers. Although current studies have exploited deep learning and internet data (especially search engine data) to anticipate tourism demand more precisely, few have examined the viability of using social media data and deep learning algorithms to predict tourism demand. This study aims to find the key topics extracted from online reviews and integrate them into the deep learning model to forecast tourism demand. We present a novel forecasting model based on TripAdvisor reviews. Latent topics and their associated keywords are captured from reviews through Latent Dirichlet Allocation (LDA), These generated features are then employed as an additional feature into the deep learning (DL) algorithm to forecast the monthly tourist arrivals to Hong Kong from USA. We used machine learning models, artificial neural networks (ANNs), support vector regression (SVR), and random forest (RF) as benchmark models. The empirical results show that the proposed forecasting model is more accurate than other models, which rely only on historical data. Furthermore, our findings indicate that integration of the topics extracted from social media reviews can enhance the prediction.","PeriodicalId":41912,"journal":{"name":"International Journal of Electrical and Computer Engineering Systems","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning approach and topic modelling for forecasting tourist arrivals\",\"authors\":\"Houria Laaroussi, F. Guerouate, M. Sbihi\",\"doi\":\"10.32985/ijeces.14.4.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online review data attracts the attention of researchers and practitioners in various fields, but its application in tourism is still limited. The social media data can finely reflect tourist arrivals forecasting. Accurate prediction of tourist arrivals is essential for tourism decision-makers. Although current studies have exploited deep learning and internet data (especially search engine data) to anticipate tourism demand more precisely, few have examined the viability of using social media data and deep learning algorithms to predict tourism demand. This study aims to find the key topics extracted from online reviews and integrate them into the deep learning model to forecast tourism demand. We present a novel forecasting model based on TripAdvisor reviews. Latent topics and their associated keywords are captured from reviews through Latent Dirichlet Allocation (LDA), These generated features are then employed as an additional feature into the deep learning (DL) algorithm to forecast the monthly tourist arrivals to Hong Kong from USA. We used machine learning models, artificial neural networks (ANNs), support vector regression (SVR), and random forest (RF) as benchmark models. The empirical results show that the proposed forecasting model is more accurate than other models, which rely only on historical data. Furthermore, our findings indicate that integration of the topics extracted from social media reviews can enhance the prediction.\",\"PeriodicalId\":41912,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32985/ijeces.14.4.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32985/ijeces.14.4.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Deep learning approach and topic modelling for forecasting tourist arrivals
Online review data attracts the attention of researchers and practitioners in various fields, but its application in tourism is still limited. The social media data can finely reflect tourist arrivals forecasting. Accurate prediction of tourist arrivals is essential for tourism decision-makers. Although current studies have exploited deep learning and internet data (especially search engine data) to anticipate tourism demand more precisely, few have examined the viability of using social media data and deep learning algorithms to predict tourism demand. This study aims to find the key topics extracted from online reviews and integrate them into the deep learning model to forecast tourism demand. We present a novel forecasting model based on TripAdvisor reviews. Latent topics and their associated keywords are captured from reviews through Latent Dirichlet Allocation (LDA), These generated features are then employed as an additional feature into the deep learning (DL) algorithm to forecast the monthly tourist arrivals to Hong Kong from USA. We used machine learning models, artificial neural networks (ANNs), support vector regression (SVR), and random forest (RF) as benchmark models. The empirical results show that the proposed forecasting model is more accurate than other models, which rely only on historical data. Furthermore, our findings indicate that integration of the topics extracted from social media reviews can enhance the prediction.
期刊介绍:
The International Journal of Electrical and Computer Engineering Systems publishes original research in the form of full papers, case studies, reviews and surveys. It covers theory and application of electrical and computer engineering, synergy of computer systems and computational methods with electrical and electronic systems, as well as interdisciplinary research. Power systems Renewable electricity production Power electronics Electrical drives Industrial electronics Communication systems Advanced modulation techniques RFID devices and systems Signal and data processing Image processing Multimedia systems Microelectronics Instrumentation and measurement Control systems Robotics Modeling and simulation Modern computer architectures Computer networks Embedded systems High-performance computing Engineering education Parallel and distributed computer systems Human-computer systems Intelligent systems Multi-agent and holonic systems Real-time systems Software engineering Internet and web applications and systems Applications of computer systems in engineering and related disciplines Mathematical models of engineering systems Engineering management.