{"title":"硅灰和煤矸石废料增强偏高岭土聚合物的长期耐硫酸和盐酸性能","authors":"Yurdakul Aygörmez, O. Canpolat","doi":"10.7764/rdlc.20.2.291","DOIUrl":null,"url":null,"abstract":"For this paper, silica fume (SF), slag (S), and colemanite waste (C) were added to metakaolin (MK)-based geopolymer composites and exposed to 10% (by volume) hydrochloric acid (HCl) and sulfuric acid (H2SO4) solutions for up to 12 months. Geopolymer composites were examined in terms of weight loss, compressive strength, and flexural strength at 3, 6, and 12 months in solutions. Furthermore, Scanning Electron Microscopy (SEM), Micro-computed Tomography (micro-CT), Fourier Transform Infrared Spectroscopy (FTIR), and X-ray Diffraction (XRD) analyses were carried out to examine the microstructure before and after acid attacks. An important decrease in flexural and compressive strengths was seen when geopolymer mortars were subjected to sulfuric and hydrochloric acid attacks. The main cause of this situation is the deterioration of the oxy-aluminum bridge (-Al-Si-O) when exposed to sulfuric and hydrochloric acid. The oxy-aluminum bridge (-Al-Si-O), the primary factor in the geopolymer matrix, plays a significant role in consolidating the gel and enhancing the bond formed between the matrix components. Despite this, geopolymer mortar samples maintain the aluminosilicate structure. Compared to hydrochloric acid, sulfuric acid is a stronger solution, resulting in a greater loss of compressive and flexural strengths.","PeriodicalId":54473,"journal":{"name":"Revista de la Construccion","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Long-term sulfuric and hydrochloric acid resistance of silica fume and colemanite waste reinforced metakaolin-based geopolymers\",\"authors\":\"Yurdakul Aygörmez, O. Canpolat\",\"doi\":\"10.7764/rdlc.20.2.291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For this paper, silica fume (SF), slag (S), and colemanite waste (C) were added to metakaolin (MK)-based geopolymer composites and exposed to 10% (by volume) hydrochloric acid (HCl) and sulfuric acid (H2SO4) solutions for up to 12 months. Geopolymer composites were examined in terms of weight loss, compressive strength, and flexural strength at 3, 6, and 12 months in solutions. Furthermore, Scanning Electron Microscopy (SEM), Micro-computed Tomography (micro-CT), Fourier Transform Infrared Spectroscopy (FTIR), and X-ray Diffraction (XRD) analyses were carried out to examine the microstructure before and after acid attacks. An important decrease in flexural and compressive strengths was seen when geopolymer mortars were subjected to sulfuric and hydrochloric acid attacks. The main cause of this situation is the deterioration of the oxy-aluminum bridge (-Al-Si-O) when exposed to sulfuric and hydrochloric acid. The oxy-aluminum bridge (-Al-Si-O), the primary factor in the geopolymer matrix, plays a significant role in consolidating the gel and enhancing the bond formed between the matrix components. Despite this, geopolymer mortar samples maintain the aluminosilicate structure. Compared to hydrochloric acid, sulfuric acid is a stronger solution, resulting in a greater loss of compressive and flexural strengths.\",\"PeriodicalId\":54473,\"journal\":{\"name\":\"Revista de la Construccion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista de la Construccion\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.7764/rdlc.20.2.291\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de la Construccion","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.7764/rdlc.20.2.291","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Long-term sulfuric and hydrochloric acid resistance of silica fume and colemanite waste reinforced metakaolin-based geopolymers
For this paper, silica fume (SF), slag (S), and colemanite waste (C) were added to metakaolin (MK)-based geopolymer composites and exposed to 10% (by volume) hydrochloric acid (HCl) and sulfuric acid (H2SO4) solutions for up to 12 months. Geopolymer composites were examined in terms of weight loss, compressive strength, and flexural strength at 3, 6, and 12 months in solutions. Furthermore, Scanning Electron Microscopy (SEM), Micro-computed Tomography (micro-CT), Fourier Transform Infrared Spectroscopy (FTIR), and X-ray Diffraction (XRD) analyses were carried out to examine the microstructure before and after acid attacks. An important decrease in flexural and compressive strengths was seen when geopolymer mortars were subjected to sulfuric and hydrochloric acid attacks. The main cause of this situation is the deterioration of the oxy-aluminum bridge (-Al-Si-O) when exposed to sulfuric and hydrochloric acid. The oxy-aluminum bridge (-Al-Si-O), the primary factor in the geopolymer matrix, plays a significant role in consolidating the gel and enhancing the bond formed between the matrix components. Despite this, geopolymer mortar samples maintain the aluminosilicate structure. Compared to hydrochloric acid, sulfuric acid is a stronger solution, resulting in a greater loss of compressive and flexural strengths.
期刊介绍:
The Journal of Construction is aimed at professionals, constructors, academics, researchers, companies, architects, engineers, and anyone who wishes to expand and update their knowledge about construction. We therefore invite all researchers, academics, and professionals to send their contributions for assessment and possible publication in this journal. The publications are free of publication charges.
OBJECTIVES
The objectives of the Journal of Construction are:
1. To disseminate new knowledge in all areas related to construction (Building, Civil Works, Materials, Business, Education, etc.).
2. To provide professionals in the area with material for discussion to refresh and update their knowledge.
3. To disseminate new applied technologies in construction nationally and internationally.
4. To provide national and foreign academics with an internationally endorsed medium in which to share their knowledge and debate the topics raised.