单层膜水下可调焦太阳能聚光器光学特性研究

Q2 Energy
Shen Liang, Hongfei Zheng, Dandan Cui, Xinglong Ma
{"title":"单层膜水下可调焦太阳能聚光器光学特性研究","authors":"Shen Liang, Hongfei Zheng, Dandan Cui, Xinglong Ma","doi":"10.15627/jd.2019.15","DOIUrl":null,"url":null,"abstract":"This paper presents an underwater adjustable focus solar concentrator, which is composed of a piece of transparent elastic membrane and a hollow cylindrical-like structure. The deformation characteristic of the membrane is simulated in this study. It is found that the membrane is deformed into a sphere under the action of pressure difference. Optical simulation of the concentrator with different deformation ratios is carried out. The results illustrate that both the f-number and the concentration ratio are decreased when the membrane deformation is enlarged. For instance, if the deformation ratio changes from 0.1 to 0.4, the f-number ranges from 20 to 5.6, and the concentration ratio is changed from 440 to 40. The variation of the light receiving rate with the tracking error is also analyzed. The results show that the receiver captures 73% light within the tracking error of 0.6°. Experiments are performed to investigate the energy distribution on the focus and the performance of the underwater photovoltaic system. As a result, when the solar radiation of 590 W/m2 is achieved, the maximum energy density on the focus decreases from 40 kW/m2 to about 35.4 kW/m2 with the deformation ratio ranges from 0.1 to 0.3. In addition, the average output power of about 1.3 W of the gallium arsenide solar cell, having a size of 10×10 mm2, is achieved. © 2019 The Author(s). Published by solarlits.com. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).","PeriodicalId":37388,"journal":{"name":"Journal of Daylighting","volume":"6 1","pages":"169-175"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optical Characteristic Investigation on an Underwater Adjustable Focus Solar Concentrator with Single-Layer Membrane\",\"authors\":\"Shen Liang, Hongfei Zheng, Dandan Cui, Xinglong Ma\",\"doi\":\"10.15627/jd.2019.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an underwater adjustable focus solar concentrator, which is composed of a piece of transparent elastic membrane and a hollow cylindrical-like structure. The deformation characteristic of the membrane is simulated in this study. It is found that the membrane is deformed into a sphere under the action of pressure difference. Optical simulation of the concentrator with different deformation ratios is carried out. The results illustrate that both the f-number and the concentration ratio are decreased when the membrane deformation is enlarged. For instance, if the deformation ratio changes from 0.1 to 0.4, the f-number ranges from 20 to 5.6, and the concentration ratio is changed from 440 to 40. The variation of the light receiving rate with the tracking error is also analyzed. The results show that the receiver captures 73% light within the tracking error of 0.6°. Experiments are performed to investigate the energy distribution on the focus and the performance of the underwater photovoltaic system. As a result, when the solar radiation of 590 W/m2 is achieved, the maximum energy density on the focus decreases from 40 kW/m2 to about 35.4 kW/m2 with the deformation ratio ranges from 0.1 to 0.3. In addition, the average output power of about 1.3 W of the gallium arsenide solar cell, having a size of 10×10 mm2, is achieved. © 2019 The Author(s). Published by solarlits.com. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).\",\"PeriodicalId\":37388,\"journal\":{\"name\":\"Journal of Daylighting\",\"volume\":\"6 1\",\"pages\":\"169-175\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Daylighting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15627/jd.2019.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Daylighting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15627/jd.2019.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种水下可调焦太阳能聚光器,该聚光器由透明弹性膜和中空圆柱状结构组成。本文模拟了膜的变形特性。结果表明,膜在压差作用下呈球形变形。对不同变形率的聚光器进行了光学模拟。结果表明,随着膜变形的增大,f数和浓度比均减小。例如,变形比从0.1变化到0.4,f值从20变化到5.6,浓度比从440变化到40。分析了光接收率随跟踪误差的变化规律。结果表明,接收机捕获73%的光,跟踪误差为0.6°。通过实验研究了聚焦点上的能量分布和水下光伏系统的性能。因此,当太阳辐射达到590 W/m2时,焦点上的最大能量密度从40 kW/m2减小到35.4 kW/m2左右,变形比在0.1 ~ 0.3之间。此外,砷化镓太阳能电池的平均输出功率约为1.3 W,尺寸为10×10 mm2。©2019作者。由solarlits.com出版。这是一篇基于CC BY许可(http://creativecommons.org/licenses/by/4.0/)的开放获取文章。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optical Characteristic Investigation on an Underwater Adjustable Focus Solar Concentrator with Single-Layer Membrane
This paper presents an underwater adjustable focus solar concentrator, which is composed of a piece of transparent elastic membrane and a hollow cylindrical-like structure. The deformation characteristic of the membrane is simulated in this study. It is found that the membrane is deformed into a sphere under the action of pressure difference. Optical simulation of the concentrator with different deformation ratios is carried out. The results illustrate that both the f-number and the concentration ratio are decreased when the membrane deformation is enlarged. For instance, if the deformation ratio changes from 0.1 to 0.4, the f-number ranges from 20 to 5.6, and the concentration ratio is changed from 440 to 40. The variation of the light receiving rate with the tracking error is also analyzed. The results show that the receiver captures 73% light within the tracking error of 0.6°. Experiments are performed to investigate the energy distribution on the focus and the performance of the underwater photovoltaic system. As a result, when the solar radiation of 590 W/m2 is achieved, the maximum energy density on the focus decreases from 40 kW/m2 to about 35.4 kW/m2 with the deformation ratio ranges from 0.1 to 0.3. In addition, the average output power of about 1.3 W of the gallium arsenide solar cell, having a size of 10×10 mm2, is achieved. © 2019 The Author(s). Published by solarlits.com. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Daylighting
Journal of Daylighting Energy-Renewable Energy, Sustainability and the Environment
CiteScore
4.00
自引率
0.00%
发文量
18
审稿时长
10 weeks
期刊介绍: Journal of Daylighting is an international journal devoted to investigations of daylighting in buildings. It is the leading journal that publishes original research on all aspects of solar energy and lighting. Areas of special interest for this journal include, but are not limited to, the following: -Daylighting systems -Lighting simulation -Lighting designs -Luminaires -Lighting metrology and light quality -Lighting control -Building physics - lighting -Building energy modeling -Energy efficient buildings -Zero-energy buildings -Indoor environment quality -Sustainable solar energy systems -Application of solar energy sources in buildings -Photovoltaics systems -Building-integrated photovoltaics -Concentrator technology -Concentrator photovoltaic -Solar thermal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信