𝜆-family水波方程整体弱解的存在性与正则性

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Geng Chen, Yannan Shen, Shihui Zhu
{"title":"𝜆-family水波方程整体弱解的存在性与正则性","authors":"Geng Chen, Yannan Shen, Shihui Zhu","doi":"10.1090/qam/1660","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we prove the global existence of Hölder continuous solutions for the Cauchy problem of a family of partial differential equations, named as <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda\">\n <mml:semantics>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\lambda</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-family equations, where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda\">\n <mml:semantics>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\lambda</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is the power of nonlinear wave speed. The <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda\">\n <mml:semantics>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\lambda</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-family equations include Camassa-Holm equation (<inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda equals 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\lambda =1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>) and Novikov equation (<inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda equals 2\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\lambda =2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>) modelling water waves, where solutions generically form finite time cusp singularities, or, in other words, show wave breaking phenomenon. The global energy conservative solution we construct is Hölder continuous with exponent <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1 minus StartFraction 1 Over 2 lamda EndFraction\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>1</mml:mn>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mfrac>\n <mml:mn>1</mml:mn>\n <mml:mrow>\n <mml:mn>2</mml:mn>\n <mml:mi>λ<!-- λ --></mml:mi>\n </mml:mrow>\n </mml:mfrac>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">1- \\frac {1}{2\\lambda }</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. The existence result also paves the way for the future study on uniqueness and Lipschitz continuous dependence.</p>","PeriodicalId":20964,"journal":{"name":"Quarterly of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and regularity for global weak solutions to the 𝜆-family water wave equations\",\"authors\":\"Geng Chen, Yannan Shen, Shihui Zhu\",\"doi\":\"10.1090/qam/1660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we prove the global existence of Hölder continuous solutions for the Cauchy problem of a family of partial differential equations, named as <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"lamda\\\">\\n <mml:semantics>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\lambda</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-family equations, where <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"lamda\\\">\\n <mml:semantics>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\lambda</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is the power of nonlinear wave speed. The <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"lamda\\\">\\n <mml:semantics>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\lambda</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-family equations include Camassa-Holm equation (<inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"lamda equals 1\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\lambda =1</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>) and Novikov equation (<inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"lamda equals 2\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:mn>2</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\lambda =2</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>) modelling water waves, where solutions generically form finite time cusp singularities, or, in other words, show wave breaking phenomenon. The global energy conservative solution we construct is Hölder continuous with exponent <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"1 minus StartFraction 1 Over 2 lamda EndFraction\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mn>1</mml:mn>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mfrac>\\n <mml:mn>1</mml:mn>\\n <mml:mrow>\\n <mml:mn>2</mml:mn>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n </mml:mrow>\\n </mml:mfrac>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">1- \\\\frac {1}{2\\\\lambda }</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. The existence result also paves the way for the future study on uniqueness and Lipschitz continuous dependence.</p>\",\"PeriodicalId\":20964,\"journal\":{\"name\":\"Quarterly of Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly of Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/qam/1660\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/qam/1660","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文证明了一类偏微分方程组Cauchy问题的Hölder连续解的全局存在性,称为λλ-族方程,其中λλ是非线性波速的幂。λ\lambda族方程包括模拟水波的Camassa-Holm方程(λ=1\lambda=1)和Novikov方程(λ=2\lambda=2),其中解一般形成有限时间尖点奇点,或者换句话说,显示破浪现象。我们构造的全局能量守恒解是指数为1−1 2λ1-\frac{1}{2\lambda}的Hölder连续解。存在性的结果也为以后研究唯一性和Lipschitz连续依赖性铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and regularity for global weak solutions to the 𝜆-family water wave equations

In this paper, we prove the global existence of Hölder continuous solutions for the Cauchy problem of a family of partial differential equations, named as λ \lambda -family equations, where λ \lambda is the power of nonlinear wave speed. The λ \lambda -family equations include Camassa-Holm equation ( λ = 1 \lambda =1 ) and Novikov equation ( λ = 2 \lambda =2 ) modelling water waves, where solutions generically form finite time cusp singularities, or, in other words, show wave breaking phenomenon. The global energy conservative solution we construct is Hölder continuous with exponent 1 1 2 λ 1- \frac {1}{2\lambda } . The existence result also paves the way for the future study on uniqueness and Lipschitz continuous dependence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quarterly of Applied Mathematics
Quarterly of Applied Mathematics 数学-应用数学
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
>12 weeks
期刊介绍: The Quarterly of Applied Mathematics contains original papers in applied mathematics which have a close connection with applications. An author index appears in the last issue of each volume. This journal, published quarterly by Brown University with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信