高寒植被对日本北部阿尔卑斯高山源头储水功能的影响

IF 3.1 Q2 GEOSCIENCES, MULTIDISCIPLINARY
Mayu Fujino , Koichi Sakakibara , Maki Tsujimura , Keisuke Suzuki
{"title":"高寒植被对日本北部阿尔卑斯高山源头储水功能的影响","authors":"Mayu Fujino ,&nbsp;Koichi Sakakibara ,&nbsp;Maki Tsujimura ,&nbsp;Keisuke Suzuki","doi":"10.1016/j.hydroa.2022.100146","DOIUrl":null,"url":null,"abstract":"<div><p>As mountainous areas provide abundant water resources to lower elevations, and alpine zones are major recharge areas for water resources, it is important to understand water storage and discharge processes in these zones. Regarding water storage, sedimentary structures (e.g., talus and moraines) in alpine zones function as aquifers. However, the functions of vegetation, thought to contribute to water recharge and storage in forested watersheds, have rarely been investigated. Accordingly, we evaluated the influence of alpine vegetation on water storage processes in alpine zones. Two intensive field surveys were conducted on August 17 and October 5, 2019, in the alpine headwaters of Mt. Norikura in the Northern Japan Alps. Chemical analyses were conducted of rainwater, snowmelt water, and runoff water from bare and vegetated catchments. From the results, a two-component separation was conducted to calculate the contributions of precipitation and groundwater components to runoff water. Our results implied that runoff water from vegetated catchments was in contact with the regolith for longer, with the contribution of groundwater being higher in this runoff water. Moreover, the groundwater component contribution tended to increase as the ratio of vegetation area to bare area in each catchment increased, suggesting a higher water storage function for vegetated areas. In other words, the subsurface water flow should be slower in vegetated areas due to the presence of vegetated soils compared to bare areas where coarse-grained sediments are dominant. Accordingly, the alpine vegetated area has a higher water storage function than the alpine bare area.</p></div>","PeriodicalId":36948,"journal":{"name":"Journal of Hydrology X","volume":"18 ","pages":"Article 100146"},"PeriodicalIF":3.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Influence of alpine vegetation on water storage and discharge functions in an alpine headwater of Northern Japan Alps\",\"authors\":\"Mayu Fujino ,&nbsp;Koichi Sakakibara ,&nbsp;Maki Tsujimura ,&nbsp;Keisuke Suzuki\",\"doi\":\"10.1016/j.hydroa.2022.100146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As mountainous areas provide abundant water resources to lower elevations, and alpine zones are major recharge areas for water resources, it is important to understand water storage and discharge processes in these zones. Regarding water storage, sedimentary structures (e.g., talus and moraines) in alpine zones function as aquifers. However, the functions of vegetation, thought to contribute to water recharge and storage in forested watersheds, have rarely been investigated. Accordingly, we evaluated the influence of alpine vegetation on water storage processes in alpine zones. Two intensive field surveys were conducted on August 17 and October 5, 2019, in the alpine headwaters of Mt. Norikura in the Northern Japan Alps. Chemical analyses were conducted of rainwater, snowmelt water, and runoff water from bare and vegetated catchments. From the results, a two-component separation was conducted to calculate the contributions of precipitation and groundwater components to runoff water. Our results implied that runoff water from vegetated catchments was in contact with the regolith for longer, with the contribution of groundwater being higher in this runoff water. Moreover, the groundwater component contribution tended to increase as the ratio of vegetation area to bare area in each catchment increased, suggesting a higher water storage function for vegetated areas. In other words, the subsurface water flow should be slower in vegetated areas due to the presence of vegetated soils compared to bare areas where coarse-grained sediments are dominant. Accordingly, the alpine vegetated area has a higher water storage function than the alpine bare area.</p></div>\",\"PeriodicalId\":36948,\"journal\":{\"name\":\"Journal of Hydrology X\",\"volume\":\"18 \",\"pages\":\"Article 100146\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589915522000281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589915522000281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

山区为低海拔地区提供了丰富的水资源,高寒地区是水资源的主要补给区,了解高寒地区的储水和排水过程具有重要意义。在蓄水方面,高寒地区的沉积构造(如土垄和冰碛)起蓄水层的作用。然而,植被的功能被认为有助于森林流域的水补给和储存,很少被调查。因此,我们评估了高寒植被对高寒地区蓄水过程的影响。2019年8月17日和10月5日,在日本北部阿尔卑斯山的Norikura山的高山源头进行了两次密集的实地调查。化学分析进行了雨水,融雪水,径流水从裸露和植被集水区。在此基础上,进行了双组分分离,计算了降水和地下水组分对径流的贡献。研究结果表明,植被覆盖的流域径流与风化层的接触时间较长,地下水在径流中的贡献较大。随着各流域植被面积与裸地面积之比的增加,地下水组分的贡献有增加的趋势,表明植被区具有更高的蓄水功能。换句话说,由于植被土壤的存在,与粗颗粒沉积物占主导地位的光秃秃的地区相比,地下水流应该更慢。因此,高寒植被区比高寒光秃区具有更高的蓄水功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of alpine vegetation on water storage and discharge functions in an alpine headwater of Northern Japan Alps

As mountainous areas provide abundant water resources to lower elevations, and alpine zones are major recharge areas for water resources, it is important to understand water storage and discharge processes in these zones. Regarding water storage, sedimentary structures (e.g., talus and moraines) in alpine zones function as aquifers. However, the functions of vegetation, thought to contribute to water recharge and storage in forested watersheds, have rarely been investigated. Accordingly, we evaluated the influence of alpine vegetation on water storage processes in alpine zones. Two intensive field surveys were conducted on August 17 and October 5, 2019, in the alpine headwaters of Mt. Norikura in the Northern Japan Alps. Chemical analyses were conducted of rainwater, snowmelt water, and runoff water from bare and vegetated catchments. From the results, a two-component separation was conducted to calculate the contributions of precipitation and groundwater components to runoff water. Our results implied that runoff water from vegetated catchments was in contact with the regolith for longer, with the contribution of groundwater being higher in this runoff water. Moreover, the groundwater component contribution tended to increase as the ratio of vegetation area to bare area in each catchment increased, suggesting a higher water storage function for vegetated areas. In other words, the subsurface water flow should be slower in vegetated areas due to the presence of vegetated soils compared to bare areas where coarse-grained sediments are dominant. Accordingly, the alpine vegetated area has a higher water storage function than the alpine bare area.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hydrology X
Journal of Hydrology X Environmental Science-Water Science and Technology
CiteScore
7.00
自引率
2.50%
发文量
20
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信