{"title":"卫星多普勒雷达散射仪测量海面流速估算海面海流发散","authors":"D. Chelton","doi":"10.1175/jtech-d-23-0052.1","DOIUrl":null,"url":null,"abstract":"\nThe ability to estimate surface current divergence and vorticity from space is assessed from simulated satellite Doppler radar scatterometer measurements of surface velocity with an effective footprint diameter of 5 km across an 1800-km measurement swath. The focus is on non-internal-wave contributions to divergence and vorticity. This is achieved by simulating Doppler measurements of surface velocity from a numerical model in which internal waves are weak because of high dissipation, seasonal cycle forcing and the lack of tidal forcing. Divergence is much more challenging to estimate than vorticity because the signals are weaker and restricted to smaller scales. With the measurement noise that was anticipated based on early engineering studies, divergence cannot be estimated with useful resolution. Recent advances in the understanding of how the noise in measurements of surface currents depends on the ambient wind speed have concluded that measurement noise will be substantially smaller in conditions of wind speed greater than 6 m s−1. A reassessment of the ability to estimate non-internal-wave contributions to surface current divergence in this study finds that useful estimates can be obtained in such wind conditions; the wavelength resolution capability for divergence estimates in the middle of the measurement swaths will be better than 100 km in 16-day averages. The improved measurement accuracy will also provide estimates of surface current vorticity with a resolution nearly a factor-of-2 higher than was previously thought, resulting in wavelength resolutions of about 50 km, 30 km and 20 km in snapshots, 4-day averages and 16-day averages, respectively.","PeriodicalId":15074,"journal":{"name":"Journal of Atmospheric and Oceanic Technology","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of Surface Current Divergence from Satellite Doppler Radar Scatterometer Measurements of Surface Ocean Velocity\",\"authors\":\"D. Chelton\",\"doi\":\"10.1175/jtech-d-23-0052.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nThe ability to estimate surface current divergence and vorticity from space is assessed from simulated satellite Doppler radar scatterometer measurements of surface velocity with an effective footprint diameter of 5 km across an 1800-km measurement swath. The focus is on non-internal-wave contributions to divergence and vorticity. This is achieved by simulating Doppler measurements of surface velocity from a numerical model in which internal waves are weak because of high dissipation, seasonal cycle forcing and the lack of tidal forcing. Divergence is much more challenging to estimate than vorticity because the signals are weaker and restricted to smaller scales. With the measurement noise that was anticipated based on early engineering studies, divergence cannot be estimated with useful resolution. Recent advances in the understanding of how the noise in measurements of surface currents depends on the ambient wind speed have concluded that measurement noise will be substantially smaller in conditions of wind speed greater than 6 m s−1. A reassessment of the ability to estimate non-internal-wave contributions to surface current divergence in this study finds that useful estimates can be obtained in such wind conditions; the wavelength resolution capability for divergence estimates in the middle of the measurement swaths will be better than 100 km in 16-day averages. The improved measurement accuracy will also provide estimates of surface current vorticity with a resolution nearly a factor-of-2 higher than was previously thought, resulting in wavelength resolutions of about 50 km, 30 km and 20 km in snapshots, 4-day averages and 16-day averages, respectively.\",\"PeriodicalId\":15074,\"journal\":{\"name\":\"Journal of Atmospheric and Oceanic Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric and Oceanic Technology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/jtech-d-23-0052.1\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, OCEAN\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Oceanic Technology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jtech-d-23-0052.1","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 0
摘要
通过模拟卫星多普勒雷达散射仪对1800公里测量带上有效足迹直径为5公里的表面速度的测量,评估了从空间估计表面电流散度和涡度的能力。重点是非内波对散度和涡度的贡献。这是通过模拟数值模型中表面速度的多普勒测量来实现的,在该模型中,由于高耗散、季节性周期强迫和缺乏潮汐强迫,内波较弱。散度比涡度更难估计,因为信号较弱,并且局限于较小的尺度。由于测量噪声是基于早期工程研究预期的,因此无法用有用的分辨率来估计偏差。在理解表面电流测量中的噪声如何取决于环境风速方面的最新进展表明,在风速大于6 m s−1的情况下,测量噪声将显著较小。在这项研究中,对估计非内波对地表电流发散的贡献的能力进行了重新评估,发现在这种风况下可以获得有用的估计;在16天的平均值中,测量带中间的发散估计的波长分辨率能力将优于100km。测量精度的提高还将提供表面流涡度的估计,其分辨率比之前认为的高出近2倍,从而在快照、4天平均值和16天平均值中分别获得约50公里、30公里和20公里的波长分辨率。
Estimation of Surface Current Divergence from Satellite Doppler Radar Scatterometer Measurements of Surface Ocean Velocity
The ability to estimate surface current divergence and vorticity from space is assessed from simulated satellite Doppler radar scatterometer measurements of surface velocity with an effective footprint diameter of 5 km across an 1800-km measurement swath. The focus is on non-internal-wave contributions to divergence and vorticity. This is achieved by simulating Doppler measurements of surface velocity from a numerical model in which internal waves are weak because of high dissipation, seasonal cycle forcing and the lack of tidal forcing. Divergence is much more challenging to estimate than vorticity because the signals are weaker and restricted to smaller scales. With the measurement noise that was anticipated based on early engineering studies, divergence cannot be estimated with useful resolution. Recent advances in the understanding of how the noise in measurements of surface currents depends on the ambient wind speed have concluded that measurement noise will be substantially smaller in conditions of wind speed greater than 6 m s−1. A reassessment of the ability to estimate non-internal-wave contributions to surface current divergence in this study finds that useful estimates can be obtained in such wind conditions; the wavelength resolution capability for divergence estimates in the middle of the measurement swaths will be better than 100 km in 16-day averages. The improved measurement accuracy will also provide estimates of surface current vorticity with a resolution nearly a factor-of-2 higher than was previously thought, resulting in wavelength resolutions of about 50 km, 30 km and 20 km in snapshots, 4-day averages and 16-day averages, respectively.
期刊介绍:
The Journal of Atmospheric and Oceanic Technology (JTECH) publishes research describing instrumentation and methods used in atmospheric and oceanic research, including remote sensing instruments; measurements, validation, and data analysis techniques from satellites, aircraft, balloons, and surface-based platforms; in situ instruments, measurements, and methods for data acquisition, analysis, and interpretation and assimilation in numerical models; and information systems and algorithms.