Nehad Ali Shah, Bander N. Almutairi, D. Vieru, A. El-Deeb
{"title":"热记忆对具有可渗透壁的矩形通道中瞬态MHD浮力驱动流的影响:具有分数热通量的自由对流","authors":"Nehad Ali Shah, Bander N. Almutairi, D. Vieru, A. El-Deeb","doi":"10.3390/fractalfract7090664","DOIUrl":null,"url":null,"abstract":"This study investigates the effects of magnetic induction, ion slip and Hall current on the flow of linear viscous fluids in a rectangular buoyant channel. In a hydro-magnetic flow scenario with permeable and conducting walls, one wall has a temperature variation that changes over time, while the other wall keeps a constant temperature; the research focuses on this situation. Asymmetric wall heating and suction/injection effects are also examined in the study. Using the Laplace transform, analytical solutions in the Laplace domain for temperature, velocity and induced magnetic field have been determined. The Stehfest approach has been used to find numerical solutions in the real domain by reversing Laplace transforms. The generalized thermal process makes use of an original fractional constitutive equation, in which the thermal flux is influenced by the history of temperature gradients, which has an impact on both the thermal process and the fluid’s hydro-magnetic behavior. The influence of thermal memory on heat transfer, fluid movement and magnetic induction was highlighted by comparing the solutions of the fractional model with the classic one based on Fourier’s law.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effects of Thermal Memory on a Transient MHD Buoyancy-Driven Flow in a Rectangular Channel with Permeable Walls: A Free Convection Flow with a Fractional Thermal Flux\",\"authors\":\"Nehad Ali Shah, Bander N. Almutairi, D. Vieru, A. El-Deeb\",\"doi\":\"10.3390/fractalfract7090664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the effects of magnetic induction, ion slip and Hall current on the flow of linear viscous fluids in a rectangular buoyant channel. In a hydro-magnetic flow scenario with permeable and conducting walls, one wall has a temperature variation that changes over time, while the other wall keeps a constant temperature; the research focuses on this situation. Asymmetric wall heating and suction/injection effects are also examined in the study. Using the Laplace transform, analytical solutions in the Laplace domain for temperature, velocity and induced magnetic field have been determined. The Stehfest approach has been used to find numerical solutions in the real domain by reversing Laplace transforms. The generalized thermal process makes use of an original fractional constitutive equation, in which the thermal flux is influenced by the history of temperature gradients, which has an impact on both the thermal process and the fluid’s hydro-magnetic behavior. The influence of thermal memory on heat transfer, fluid movement and magnetic induction was highlighted by comparing the solutions of the fractional model with the classic one based on Fourier’s law.\",\"PeriodicalId\":12435,\"journal\":{\"name\":\"Fractal and Fractional\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractal and Fractional\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3390/fractalfract7090664\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/fractalfract7090664","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
The Effects of Thermal Memory on a Transient MHD Buoyancy-Driven Flow in a Rectangular Channel with Permeable Walls: A Free Convection Flow with a Fractional Thermal Flux
This study investigates the effects of magnetic induction, ion slip and Hall current on the flow of linear viscous fluids in a rectangular buoyant channel. In a hydro-magnetic flow scenario with permeable and conducting walls, one wall has a temperature variation that changes over time, while the other wall keeps a constant temperature; the research focuses on this situation. Asymmetric wall heating and suction/injection effects are also examined in the study. Using the Laplace transform, analytical solutions in the Laplace domain for temperature, velocity and induced magnetic field have been determined. The Stehfest approach has been used to find numerical solutions in the real domain by reversing Laplace transforms. The generalized thermal process makes use of an original fractional constitutive equation, in which the thermal flux is influenced by the history of temperature gradients, which has an impact on both the thermal process and the fluid’s hydro-magnetic behavior. The influence of thermal memory on heat transfer, fluid movement and magnetic induction was highlighted by comparing the solutions of the fractional model with the classic one based on Fourier’s law.
期刊介绍:
Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.