自然启发的元启发式比较研究解决旅行商问题

A. Chandra, Aulia Naro
{"title":"自然启发的元启发式比较研究解决旅行商问题","authors":"A. Chandra, Aulia Naro","doi":"10.21776/ub.jemis.2021.009.02.1","DOIUrl":null,"url":null,"abstract":"There are numerous optimization method to solve the traveling salesman problem, TSP. One of methods is metaheuristics which is the state of the art algorithm that can solve the large and complex problem. In this research, three of well-known nature inspired population based metaheuristics algorithm: Ant Colony Optimization – ACO, Artificial Bee Colony – ABC and Particle Swarm Optimization – PSO are compared to solve the 29 destinations by using Matlab program. The ACO produces the shortest distance, 94 kilometers and is more efficient than ABC and PSO methods.","PeriodicalId":31715,"journal":{"name":"Journal of Engineering and Management in Industrial System","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NATURE INSPIRED METAHEURISTICS COMPARATIVE STUDY TO SOLVE TRAVELING SALESMAN PROBLEM\",\"authors\":\"A. Chandra, Aulia Naro\",\"doi\":\"10.21776/ub.jemis.2021.009.02.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are numerous optimization method to solve the traveling salesman problem, TSP. One of methods is metaheuristics which is the state of the art algorithm that can solve the large and complex problem. In this research, three of well-known nature inspired population based metaheuristics algorithm: Ant Colony Optimization – ACO, Artificial Bee Colony – ABC and Particle Swarm Optimization – PSO are compared to solve the 29 destinations by using Matlab program. The ACO produces the shortest distance, 94 kilometers and is more efficient than ABC and PSO methods.\",\"PeriodicalId\":31715,\"journal\":{\"name\":\"Journal of Engineering and Management in Industrial System\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering and Management in Industrial System\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21776/ub.jemis.2021.009.02.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering and Management in Industrial System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21776/ub.jemis.2021.009.02.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

求解旅行商问题(TSP)有多种优化方法。其中一种方法是元启发式算法,这是目前最先进的算法,可以解决大型和复杂的问题。在本研究中,比较了三种著名的基于自然启发群体的元启发式算法:蚁群优化算法(Ant Colony Optimization - ACO)、人工蜂群优化算法(Artificial Bee Colony - ABC)和粒子群优化算法(Particle Swarm Optimization - PSO),利用Matlab程序求解了29个目的地。蚁群算法产生的距离最短,为94公里,比蚁群算法和粒子群算法效率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NATURE INSPIRED METAHEURISTICS COMPARATIVE STUDY TO SOLVE TRAVELING SALESMAN PROBLEM
There are numerous optimization method to solve the traveling salesman problem, TSP. One of methods is metaheuristics which is the state of the art algorithm that can solve the large and complex problem. In this research, three of well-known nature inspired population based metaheuristics algorithm: Ant Colony Optimization – ACO, Artificial Bee Colony – ABC and Particle Swarm Optimization – PSO are compared to solve the 29 destinations by using Matlab program. The ACO produces the shortest distance, 94 kilometers and is more efficient than ABC and PSO methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信