具有自回归扰动和内生回归量的空间自回归模型的GMM估计

IF 0.8 4区 经济学 Q3 ECONOMICS
Fei Jin, Yuqing Wang
{"title":"具有自回归扰动和内生回归量的空间自回归模型的GMM估计","authors":"Fei Jin, Yuqing Wang","doi":"10.1080/07474938.2021.2002521","DOIUrl":null,"url":null,"abstract":"Abstract This paper considers the generalized method of moments (GMM) estimation of a spatial autoregressive (SAR) model with SAR disturbances, where we allow for endogenous regressors in addition to a spatial lag of the dependent variable. We do not assume any reduced form of the endogenous regressors, thus we allow for spatial dependence and heterogeneity in endogenous regressors, and allow for nonlinear relations between endogenous regressors and their instruments. Innovations in the model can be homoscedastic or heteroskedastic with unknown forms. We prove that GMM estimators with linear and quadratic moments are consistent and asymptotically normal. In the homoscedastic case, we derive the best linear and quadratic moments that can generate an optimal GMM estimator with the minimum asymptotic variance.","PeriodicalId":11438,"journal":{"name":"Econometric Reviews","volume":"41 1","pages":"652 - 674"},"PeriodicalIF":0.8000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GMM estimation of a spatial autoregressive model with autoregressive disturbances and endogenous regressors\",\"authors\":\"Fei Jin, Yuqing Wang\",\"doi\":\"10.1080/07474938.2021.2002521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper considers the generalized method of moments (GMM) estimation of a spatial autoregressive (SAR) model with SAR disturbances, where we allow for endogenous regressors in addition to a spatial lag of the dependent variable. We do not assume any reduced form of the endogenous regressors, thus we allow for spatial dependence and heterogeneity in endogenous regressors, and allow for nonlinear relations between endogenous regressors and their instruments. Innovations in the model can be homoscedastic or heteroskedastic with unknown forms. We prove that GMM estimators with linear and quadratic moments are consistent and asymptotically normal. In the homoscedastic case, we derive the best linear and quadratic moments that can generate an optimal GMM estimator with the minimum asymptotic variance.\",\"PeriodicalId\":11438,\"journal\":{\"name\":\"Econometric Reviews\",\"volume\":\"41 1\",\"pages\":\"652 - 674\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Reviews\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/07474938.2021.2002521\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Reviews","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/07474938.2021.2002521","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了具有SAR干扰的空间自回归(SAR)模型的广义矩量(GMM)估计方法,其中我们允许内源性回归因子以及因变量的空间滞后。我们没有假设任何内源性回归量的简化形式,因此我们考虑了内源性回归量的空间依赖性和异质性,并考虑了内源性回归量及其工具之间的非线性关系。模型中的创新可以是具有未知形式的同方差或异方差。证明了具有线性矩和二次矩的GMM估计量是一致的和渐近正态的。在同方差情况下,我们得到了能产生最优GMM估计量的最佳线性矩和二次矩,它们具有最小的渐近方差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GMM estimation of a spatial autoregressive model with autoregressive disturbances and endogenous regressors
Abstract This paper considers the generalized method of moments (GMM) estimation of a spatial autoregressive (SAR) model with SAR disturbances, where we allow for endogenous regressors in addition to a spatial lag of the dependent variable. We do not assume any reduced form of the endogenous regressors, thus we allow for spatial dependence and heterogeneity in endogenous regressors, and allow for nonlinear relations between endogenous regressors and their instruments. Innovations in the model can be homoscedastic or heteroskedastic with unknown forms. We prove that GMM estimators with linear and quadratic moments are consistent and asymptotically normal. In the homoscedastic case, we derive the best linear and quadratic moments that can generate an optimal GMM estimator with the minimum asymptotic variance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Econometric Reviews
Econometric Reviews 管理科学-数学跨学科应用
CiteScore
1.70
自引率
0.00%
发文量
27
审稿时长
>12 weeks
期刊介绍: Econometric Reviews is widely regarded as one of the top 5 core journals in econometrics. It probes the limits of econometric knowledge, featuring regular, state-of-the-art single blind refereed articles and book reviews. ER has been consistently the leader and innovator in its acclaimed retrospective and critical surveys and interchanges on current or developing topics. Special issues of the journal are developed by a world-renowned editorial board. These bring together leading experts from econometrics and beyond. Reviews of books and software are also within the scope of the journal. Its content is expressly intended to reach beyond econometrics and advanced empirical economics, to statistics and other social sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信