基于信息先验的贝叶斯准则下指数Gompertz分布研究

Q4 Mathematics
M. Aslam, Mehreen Afzaal, M. Ishaq Bhatti
{"title":"基于信息先验的贝叶斯准则下指数Gompertz分布研究","authors":"M. Aslam, Mehreen Afzaal, M. Ishaq Bhatti","doi":"10.21307/stattrans-2021-040","DOIUrl":null,"url":null,"abstract":"Abstract The exponentiated Gompertz (EGZ) distribution has been recently used in almost all areas of human endeavours, starting from modelling lifetime data to cancer treatment. Various applications and properties of the EGZ distribution are provided by Anis and De (2020). This paper explores the important properties of the EGZ distribution under Bayesian discipline using two informative priors: the Gamma Prior (GP) and the Inverse Levy Prior (ILP). This is done in the framework of five selected loss functions. The findings show that the two best loss functions are the Weighted Balance Loss Function (WBLF) and the Quadratic Loss Function (QLF). The usefulness of the model is illustrated by the use of real-life data in relation to simulated data. The empirical results of the comparison are presented through a graphical illustration of the posterior distributions.","PeriodicalId":37985,"journal":{"name":"Statistics in Transition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A study on exponentiated Gompertz distribution under Bayesian discipline using informative priors\",\"authors\":\"M. Aslam, Mehreen Afzaal, M. Ishaq Bhatti\",\"doi\":\"10.21307/stattrans-2021-040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The exponentiated Gompertz (EGZ) distribution has been recently used in almost all areas of human endeavours, starting from modelling lifetime data to cancer treatment. Various applications and properties of the EGZ distribution are provided by Anis and De (2020). This paper explores the important properties of the EGZ distribution under Bayesian discipline using two informative priors: the Gamma Prior (GP) and the Inverse Levy Prior (ILP). This is done in the framework of five selected loss functions. The findings show that the two best loss functions are the Weighted Balance Loss Function (WBLF) and the Quadratic Loss Function (QLF). The usefulness of the model is illustrated by the use of real-life data in relation to simulated data. The empirical results of the comparison are presented through a graphical illustration of the posterior distributions.\",\"PeriodicalId\":37985,\"journal\":{\"name\":\"Statistics in Transition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics in Transition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21307/stattrans-2021-040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Transition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21307/stattrans-2021-040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

摘要

摘要指数Gompertz(EGZ)分布最近已应用于人类工作的几乎所有领域,从建模寿命数据到癌症治疗。Anis和De(2020)提供了EGZ分布的各种应用和性质。本文使用两个信息先验:伽玛先验(GP)和逆Levy先验(ILP),探讨了贝叶斯学科下EGZ分布的重要性质。这是在五个选定的损失函数的框架内完成的。研究结果表明,两个最佳损失函数是加权平衡损失函数(WBLF)和二次损失函数(QLF)。通过使用与模拟数据相关的真实数据来说明该模型的有用性。通过后验分布的图解说明,给出了比较的经验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A study on exponentiated Gompertz distribution under Bayesian discipline using informative priors
Abstract The exponentiated Gompertz (EGZ) distribution has been recently used in almost all areas of human endeavours, starting from modelling lifetime data to cancer treatment. Various applications and properties of the EGZ distribution are provided by Anis and De (2020). This paper explores the important properties of the EGZ distribution under Bayesian discipline using two informative priors: the Gamma Prior (GP) and the Inverse Levy Prior (ILP). This is done in the framework of five selected loss functions. The findings show that the two best loss functions are the Weighted Balance Loss Function (WBLF) and the Quadratic Loss Function (QLF). The usefulness of the model is illustrated by the use of real-life data in relation to simulated data. The empirical results of the comparison are presented through a graphical illustration of the posterior distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics in Transition
Statistics in Transition Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
9 weeks
期刊介绍: Statistics in Transition (SiT) is an international journal published jointly by the Polish Statistical Association (PTS) and the Central Statistical Office of Poland (CSO/GUS), which sponsors this publication. Launched in 1993, it was issued twice a year until 2006; since then it appears - under a slightly changed title, Statistics in Transition new series - three times a year; and after 2013 as a regular quarterly journal." The journal provides a forum for exchange of ideas and experience amongst members of international community of statisticians, data producers and users, including researchers, teachers, policy makers and the general public. Its initially dominating focus on statistical issues pertinent to transition from centrally planned to a market-oriented economy has gradually been extended to embracing statistical problems related to development and modernization of the system of public (official) statistics, in general.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信