N. Nadarajah, A. Shamdani, G. Hardie, W.K.Chiu, H. Widyastuti
{"title":"基于机器学习算法的铁路车辆动态行为预测","authors":"N. Nadarajah, A. Shamdani, G. Hardie, W.K.Chiu, H. Widyastuti","doi":"10.56748/ejse.182271","DOIUrl":null,"url":null,"abstract":"The dynamic performance of railway vehicles needs to be carefully monitored to ensure their safe operation. Presently a number of systems such as the Vehicle Track Interaction Monitor and the Instrumented Revenue Vehicles, utilize a number of on-board inertial sensors to obtain near-real time information on the dynamic performance of railway vehicles. These systems provide rich data sets that give an indication of the underlying track condition and the corresponding dynamic response. This paper outlines the use of Machine learning to develop dynamic behavior predictive models for railway vehicles from measured data. This study worked on the development of 2 types of predictive models, viz. regression and classification model. The regression model predicted the time series dynamic response amplitude and the classification model classified the track sections based on the response distribution over it. Train speed and parameters estimated from the unsprung mass were used as predictors in the model. After the trial of a number of predictive models the Ensemble Tree Bagger method was found to have highest overall prediction accuracy. These predictive models can be utilized as a decision making tool to determine safe operational limits and prioritize maintenance interventions.","PeriodicalId":52513,"journal":{"name":"Electronic Journal of Structural Engineering","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Prediction of Railway Vehicles’ Dynamic Behavior with Machine Learning Algorithms\",\"authors\":\"N. Nadarajah, A. Shamdani, G. Hardie, W.K.Chiu, H. Widyastuti\",\"doi\":\"10.56748/ejse.182271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dynamic performance of railway vehicles needs to be carefully monitored to ensure their safe operation. Presently a number of systems such as the Vehicle Track Interaction Monitor and the Instrumented Revenue Vehicles, utilize a number of on-board inertial sensors to obtain near-real time information on the dynamic performance of railway vehicles. These systems provide rich data sets that give an indication of the underlying track condition and the corresponding dynamic response. This paper outlines the use of Machine learning to develop dynamic behavior predictive models for railway vehicles from measured data. This study worked on the development of 2 types of predictive models, viz. regression and classification model. The regression model predicted the time series dynamic response amplitude and the classification model classified the track sections based on the response distribution over it. Train speed and parameters estimated from the unsprung mass were used as predictors in the model. After the trial of a number of predictive models the Ensemble Tree Bagger method was found to have highest overall prediction accuracy. These predictive models can be utilized as a decision making tool to determine safe operational limits and prioritize maintenance interventions.\",\"PeriodicalId\":52513,\"journal\":{\"name\":\"Electronic Journal of Structural Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Structural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56748/ejse.182271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56748/ejse.182271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Prediction of Railway Vehicles’ Dynamic Behavior with Machine Learning Algorithms
The dynamic performance of railway vehicles needs to be carefully monitored to ensure their safe operation. Presently a number of systems such as the Vehicle Track Interaction Monitor and the Instrumented Revenue Vehicles, utilize a number of on-board inertial sensors to obtain near-real time information on the dynamic performance of railway vehicles. These systems provide rich data sets that give an indication of the underlying track condition and the corresponding dynamic response. This paper outlines the use of Machine learning to develop dynamic behavior predictive models for railway vehicles from measured data. This study worked on the development of 2 types of predictive models, viz. regression and classification model. The regression model predicted the time series dynamic response amplitude and the classification model classified the track sections based on the response distribution over it. Train speed and parameters estimated from the unsprung mass were used as predictors in the model. After the trial of a number of predictive models the Ensemble Tree Bagger method was found to have highest overall prediction accuracy. These predictive models can be utilized as a decision making tool to determine safe operational limits and prioritize maintenance interventions.
期刊介绍:
The Electronic Journal of Structural Engineering (EJSE) is an international forum for the dissemination and discussion of leading edge research and practical applications in Structural Engineering. It comprises peer-reviewed technical papers, discussions and comments, and also news about conferences, workshops etc. in Structural Engineering. Original papers are invited from individuals involved in the field of structural engineering and construction. The areas of special interests include the following, but are not limited to: Analytical and design methods Bridges and High-rise Buildings Case studies and failure investigation Innovations in design and new technology New Construction Materials Performance of Structures Prefabrication Technology Repairs, Strengthening, and Maintenance Stability and Scaffolding Engineering Soil-structure interaction Standards and Codes of Practice Structural and solid mechanics Structural Safety and Reliability Testing Technologies Vibration, impact and structural dynamics Wind and earthquake engineering. EJSE is seeking original papers (research or state-of the art reviews) of the highest quality for consideration for publication. The papers will be published within 3 to 6 months. The papers are expected to make a significant contribution to the research and development activities of the academic and professional engineering community.