{"title":"一种新型金属化高度自掺杂聚苯胺纳米复合材料对水溶液中红花苷的高效去除","authors":"Hammed H. A. M. Hassan, Marwa Abdel Fattah","doi":"10.1186/s42252-023-00038-y","DOIUrl":null,"url":null,"abstract":"<div><p>We report the chemical synthesis of poly(<i>aniline-co</i>-<i>aniline-2,5-disulfonic acid)</i>) and its composite containing L-hexuronic acid and metallic Ag/SiO<sub>2</sub> nanoparticles as a new thermally stable anionic polyelectrolyte for removing safranin dye. The composite was characterized by IR, UV, cyclic voltammetry, SEM, TEM, TGA, DSC, EDXS and elemental analyses. Microscopic images exhibited intensified spherical particles dispersed over almost the entire surface. The XRD exhibited peaks of the partially crystalline material at many 2θ values, and their interatomic spacing and sizes were calculated. The cyclic voltammograms exhibited characteristic redox peaks relative to the quinoid ring transition states. The uptake rates up to 82.5% adsorption were completed within 75 min and the equilibrium time was 45 min. The isotherm of dye adsorption interprets the interaction with the adsorbent and explain the relationship between the dye removal capacity and the initial dye concentration. In the current, the Langmuir isotherm model was the optimum to interpret both the dye/copolymer and the dye/composite interactions. The uptake of safranin by copolymer/SiO<sub>2</sub>@Ag nanocomposite was well defined by pseudo second order model with rate constant K<sub>2</sub> = 0.03 g<sup>− 1</sup> mg<sup>− 1</sup> min<sup>− 1</sup> for 19 mg safranin. A comparison of safranin adsorption efficiency of the synthesized material with other reported material in the same domain suggested that the present composite has a higher adsorption rate and capacity. The ongoing research is devoted to improving the removal percentage of the dye by using 1,3,5-triazine based sulfonated polyaniline/Ag@ SiO<sub>2</sub> nanocomposite.</p></div>","PeriodicalId":576,"journal":{"name":"Functional Composite Materials","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://functionalcompositematerials.springeropen.com/counter/pdf/10.1186/s42252-023-00038-y","citationCount":"0","resultStr":"{\"title\":\"Efficient removal of safranin from aqueous solution using a new type of metalated highly self-doped polyaniline nanocomposite\",\"authors\":\"Hammed H. A. M. Hassan, Marwa Abdel Fattah\",\"doi\":\"10.1186/s42252-023-00038-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We report the chemical synthesis of poly(<i>aniline-co</i>-<i>aniline-2,5-disulfonic acid)</i>) and its composite containing L-hexuronic acid and metallic Ag/SiO<sub>2</sub> nanoparticles as a new thermally stable anionic polyelectrolyte for removing safranin dye. The composite was characterized by IR, UV, cyclic voltammetry, SEM, TEM, TGA, DSC, EDXS and elemental analyses. Microscopic images exhibited intensified spherical particles dispersed over almost the entire surface. The XRD exhibited peaks of the partially crystalline material at many 2θ values, and their interatomic spacing and sizes were calculated. The cyclic voltammograms exhibited characteristic redox peaks relative to the quinoid ring transition states. The uptake rates up to 82.5% adsorption were completed within 75 min and the equilibrium time was 45 min. The isotherm of dye adsorption interprets the interaction with the adsorbent and explain the relationship between the dye removal capacity and the initial dye concentration. In the current, the Langmuir isotherm model was the optimum to interpret both the dye/copolymer and the dye/composite interactions. The uptake of safranin by copolymer/SiO<sub>2</sub>@Ag nanocomposite was well defined by pseudo second order model with rate constant K<sub>2</sub> = 0.03 g<sup>− 1</sup> mg<sup>− 1</sup> min<sup>− 1</sup> for 19 mg safranin. A comparison of safranin adsorption efficiency of the synthesized material with other reported material in the same domain suggested that the present composite has a higher adsorption rate and capacity. The ongoing research is devoted to improving the removal percentage of the dye by using 1,3,5-triazine based sulfonated polyaniline/Ag@ SiO<sub>2</sub> nanocomposite.</p></div>\",\"PeriodicalId\":576,\"journal\":{\"name\":\"Functional Composite Materials\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://functionalcompositematerials.springeropen.com/counter/pdf/10.1186/s42252-023-00038-y\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Composite Materials\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s42252-023-00038-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Composite Materials","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1186/s42252-023-00038-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient removal of safranin from aqueous solution using a new type of metalated highly self-doped polyaniline nanocomposite
We report the chemical synthesis of poly(aniline-co-aniline-2,5-disulfonic acid)) and its composite containing L-hexuronic acid and metallic Ag/SiO2 nanoparticles as a new thermally stable anionic polyelectrolyte for removing safranin dye. The composite was characterized by IR, UV, cyclic voltammetry, SEM, TEM, TGA, DSC, EDXS and elemental analyses. Microscopic images exhibited intensified spherical particles dispersed over almost the entire surface. The XRD exhibited peaks of the partially crystalline material at many 2θ values, and their interatomic spacing and sizes were calculated. The cyclic voltammograms exhibited characteristic redox peaks relative to the quinoid ring transition states. The uptake rates up to 82.5% adsorption were completed within 75 min and the equilibrium time was 45 min. The isotherm of dye adsorption interprets the interaction with the adsorbent and explain the relationship between the dye removal capacity and the initial dye concentration. In the current, the Langmuir isotherm model was the optimum to interpret both the dye/copolymer and the dye/composite interactions. The uptake of safranin by copolymer/SiO2@Ag nanocomposite was well defined by pseudo second order model with rate constant K2 = 0.03 g− 1 mg− 1 min− 1 for 19 mg safranin. A comparison of safranin adsorption efficiency of the synthesized material with other reported material in the same domain suggested that the present composite has a higher adsorption rate and capacity. The ongoing research is devoted to improving the removal percentage of the dye by using 1,3,5-triazine based sulfonated polyaniline/Ag@ SiO2 nanocomposite.