{"title":"包含伪先验信息的分类广义线性混合模型预测","authors":"Haiqiang Ma, Jiming Jiang","doi":"10.1002/cjs.11727","DOIUrl":null,"url":null,"abstract":"<p>We develop a method of classified mixed model prediction based on generalized linear mixed models that incorporate pseudo-prior information to improve prediction accuracy. We establish consistency of the proposed method both in terms of prediction of the true mixed effect of interest and in terms of correctly identifying the potential class corresponding to the new observations if such a class matching one of the training data classes exists. Empirical results, including simulation studies and real-data validation, fully support the theoretical findings.</p>","PeriodicalId":55281,"journal":{"name":"Canadian Journal of Statistics-Revue Canadienne De Statistique","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classified generalized linear mixed model prediction incorporating pseudo-prior information\",\"authors\":\"Haiqiang Ma, Jiming Jiang\",\"doi\":\"10.1002/cjs.11727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We develop a method of classified mixed model prediction based on generalized linear mixed models that incorporate pseudo-prior information to improve prediction accuracy. We establish consistency of the proposed method both in terms of prediction of the true mixed effect of interest and in terms of correctly identifying the potential class corresponding to the new observations if such a class matching one of the training data classes exists. Empirical results, including simulation studies and real-data validation, fully support the theoretical findings.</p>\",\"PeriodicalId\":55281,\"journal\":{\"name\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11727\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Statistics-Revue Canadienne De Statistique","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11727","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Classified generalized linear mixed model prediction incorporating pseudo-prior information
We develop a method of classified mixed model prediction based on generalized linear mixed models that incorporate pseudo-prior information to improve prediction accuracy. We establish consistency of the proposed method both in terms of prediction of the true mixed effect of interest and in terms of correctly identifying the potential class corresponding to the new observations if such a class matching one of the training data classes exists. Empirical results, including simulation studies and real-data validation, fully support the theoretical findings.
期刊介绍:
The Canadian Journal of Statistics is the official journal of the Statistical Society of Canada. It has a reputation internationally as an excellent journal. The editorial board is comprised of statistical scientists with applied, computational, methodological, theoretical and probabilistic interests. Their role is to ensure that the journal continues to provide an international forum for the discipline of Statistics.
The journal seeks papers making broad points of interest to many readers, whereas papers making important points of more specific interest are better placed in more specialized journals. The levels of innovation and impact are key in the evaluation of submitted manuscripts.