O. Tarawneh, A. Hammad, H. Mahfouz, Lama A. Hamadneh, R. Hamed, I. Hamadneh, Ameen Rasheed Al-Assi
{"title":"黏附纤维素衍生物治疗阴道念珠菌病薄膜的研制","authors":"O. Tarawneh, A. Hammad, H. Mahfouz, Lama A. Hamadneh, R. Hamed, I. Hamadneh, Ameen Rasheed Al-Assi","doi":"10.35812/cellulosechemtechnol.2023.57.12","DOIUrl":null,"url":null,"abstract":"\"The development of easily administered targeted delivery for vaginal candidiasis is an area of active research. Challenges emerge from the specific conditions that may not permit enough time for the dosage form to reside on the infected area. Herein, we propose to develop films based on cellulose derivatives for the treatment of vaginal candidiasis. Gels of sodium carboxymethyl cellulose (Na-CMC) (F1), equal combination of Na-CMC and hydroxyethyl cellulose (HEC) (F2) and hydroxyethyl cellulose (HEC) (F3) were prepared and loaded with nystatin (NYS). The resultant gels were dried using solvent casting and characterized to detect glass transition temperature (Tg), mechanical properties, mucoadhesion, inhibition of candida growth toxicity on human embryonic kidney 293 cells (HEK) cells and drug release. Tg was affected by the polymer type and was found to be highest in F2, where equal ratios of HEC and Na-CMC were used. Mucoadhesion was highest in F1 (Na-CMC) films. The films showed moderate toxicity. The zone of inhibition was observed for the three formulations. Drug release was affected by the polymer type and was complete after 8 h in F2. The findings allowed concluding that the cellulose derivative based films were successfully prepared and were efficient in allowing the drug to elute and minimizing the growth of candida.\"","PeriodicalId":10130,"journal":{"name":"Cellulose Chemistry and Technology","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DEVELOPMENT OF MUCOADHESIVE CELLULOSE DERIVATIVES BASED FILMS FOR THE TREATMENT OF VAGINAL CANDIDIASIS\",\"authors\":\"O. Tarawneh, A. Hammad, H. Mahfouz, Lama A. Hamadneh, R. Hamed, I. Hamadneh, Ameen Rasheed Al-Assi\",\"doi\":\"10.35812/cellulosechemtechnol.2023.57.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"The development of easily administered targeted delivery for vaginal candidiasis is an area of active research. Challenges emerge from the specific conditions that may not permit enough time for the dosage form to reside on the infected area. Herein, we propose to develop films based on cellulose derivatives for the treatment of vaginal candidiasis. Gels of sodium carboxymethyl cellulose (Na-CMC) (F1), equal combination of Na-CMC and hydroxyethyl cellulose (HEC) (F2) and hydroxyethyl cellulose (HEC) (F3) were prepared and loaded with nystatin (NYS). The resultant gels were dried using solvent casting and characterized to detect glass transition temperature (Tg), mechanical properties, mucoadhesion, inhibition of candida growth toxicity on human embryonic kidney 293 cells (HEK) cells and drug release. Tg was affected by the polymer type and was found to be highest in F2, where equal ratios of HEC and Na-CMC were used. Mucoadhesion was highest in F1 (Na-CMC) films. The films showed moderate toxicity. The zone of inhibition was observed for the three formulations. Drug release was affected by the polymer type and was complete after 8 h in F2. The findings allowed concluding that the cellulose derivative based films were successfully prepared and were efficient in allowing the drug to elute and minimizing the growth of candida.\\\"\",\"PeriodicalId\":10130,\"journal\":{\"name\":\"Cellulose Chemistry and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellulose Chemistry and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.35812/cellulosechemtechnol.2023.57.12\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose Chemistry and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.35812/cellulosechemtechnol.2023.57.12","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
DEVELOPMENT OF MUCOADHESIVE CELLULOSE DERIVATIVES BASED FILMS FOR THE TREATMENT OF VAGINAL CANDIDIASIS
"The development of easily administered targeted delivery for vaginal candidiasis is an area of active research. Challenges emerge from the specific conditions that may not permit enough time for the dosage form to reside on the infected area. Herein, we propose to develop films based on cellulose derivatives for the treatment of vaginal candidiasis. Gels of sodium carboxymethyl cellulose (Na-CMC) (F1), equal combination of Na-CMC and hydroxyethyl cellulose (HEC) (F2) and hydroxyethyl cellulose (HEC) (F3) were prepared and loaded with nystatin (NYS). The resultant gels were dried using solvent casting and characterized to detect glass transition temperature (Tg), mechanical properties, mucoadhesion, inhibition of candida growth toxicity on human embryonic kidney 293 cells (HEK) cells and drug release. Tg was affected by the polymer type and was found to be highest in F2, where equal ratios of HEC and Na-CMC were used. Mucoadhesion was highest in F1 (Na-CMC) films. The films showed moderate toxicity. The zone of inhibition was observed for the three formulations. Drug release was affected by the polymer type and was complete after 8 h in F2. The findings allowed concluding that the cellulose derivative based films were successfully prepared and were efficient in allowing the drug to elute and minimizing the growth of candida."
期刊介绍:
Cellulose Chemistry and Technology covers the study and exploitation of the industrial applications of carbohydrate polymers in areas such as food, textiles, paper, wood, adhesives, pharmaceuticals, oil field applications and industrial chemistry.
Topics include:
• studies of structure and properties
• biological and industrial development
• analytical methods
• chemical and microbiological modifications
• interactions with other materials