基于数值模型的复合桁架粘接节点设计比较研究

IF 1.68 Q2 Dentistry
N. P. Lavalette, O. K. Bergsma, D. Zarouchas, R. Benedictus
{"title":"基于数值模型的复合桁架粘接节点设计比较研究","authors":"N. P. Lavalette,&nbsp;O. K. Bergsma,&nbsp;D. Zarouchas,&nbsp;R. Benedictus","doi":"10.1186/s40563-017-0100-1","DOIUrl":null,"url":null,"abstract":"<p>In the context of lightweight structure design for the transportation and robotics industries, new types of composite structures are being developed, in the form of trusses made of fiber-reinforced polymer composite members of small diameter (a few millimeters thick at most). Some concepts of wound trusses can be found in the literature, but in more general cases, for which a predefined wound truss shape is not usable, individual truss members must be joined together. The axial strength of the composite members allow them to carry a high load, and the joints between those members should be strong enough to carry this load as well. With the objective of developing an efficient joint design for an application in thin composite trusses (member thickness ranging from 0.5 to 5?mm), finite element models of several adhesive joint designs were built, and their strengths were compared. The comparison was made using the same joint configuration (number of members, member cross-sectional area, joint dimensions) and loading conditions. Adhesive failure was considered in this study, and the strength of each design was determined from the value of the peak maximum principal strain in the adhesive layer, as this failure criterion is suitable for the toughened adhesive material used in the models. A trade-off between the strength, weight and manufacturability of each joint design was made in order to conclude on their overall performance. Results suggested that, among the joint designs modelled, round-based composite rods inserted in a tubular metallic piece are the most efficient in terms of strength-to-weight ratio.</p>","PeriodicalId":464,"journal":{"name":"Applied Adhesion Science","volume":"5 1","pages":""},"PeriodicalIF":1.6800,"publicationDate":"2017-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40563-017-0100-1","citationCount":"7","resultStr":"{\"title\":\"Comparative study of adhesive joint designs for composite trusses based on numerical models\",\"authors\":\"N. P. Lavalette,&nbsp;O. K. Bergsma,&nbsp;D. Zarouchas,&nbsp;R. Benedictus\",\"doi\":\"10.1186/s40563-017-0100-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the context of lightweight structure design for the transportation and robotics industries, new types of composite structures are being developed, in the form of trusses made of fiber-reinforced polymer composite members of small diameter (a few millimeters thick at most). Some concepts of wound trusses can be found in the literature, but in more general cases, for which a predefined wound truss shape is not usable, individual truss members must be joined together. The axial strength of the composite members allow them to carry a high load, and the joints between those members should be strong enough to carry this load as well. With the objective of developing an efficient joint design for an application in thin composite trusses (member thickness ranging from 0.5 to 5?mm), finite element models of several adhesive joint designs were built, and their strengths were compared. The comparison was made using the same joint configuration (number of members, member cross-sectional area, joint dimensions) and loading conditions. Adhesive failure was considered in this study, and the strength of each design was determined from the value of the peak maximum principal strain in the adhesive layer, as this failure criterion is suitable for the toughened adhesive material used in the models. A trade-off between the strength, weight and manufacturability of each joint design was made in order to conclude on their overall performance. Results suggested that, among the joint designs modelled, round-based composite rods inserted in a tubular metallic piece are the most efficient in terms of strength-to-weight ratio.</p>\",\"PeriodicalId\":464,\"journal\":{\"name\":\"Applied Adhesion Science\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6800,\"publicationDate\":\"2017-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s40563-017-0100-1\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Adhesion Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40563-017-0100-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Dentistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Adhesion Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40563-017-0100-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Dentistry","Score":null,"Total":0}
引用次数: 7

摘要

在交通运输和机器人工业轻量化结构设计的背景下,新型复合结构正在开发,其形式是由小直径(最多几毫米厚)的纤维增强聚合物复合材料构件制成的桁架。缠绕桁架的一些概念可以在文献中找到,但在更一般的情况下,预定义的缠绕桁架形状是不可用的,单个桁架成员必须连接在一起。复合构件的轴向强度使它们能够承受高载荷,这些构件之间的接头也应该足够强,以承受这种载荷。为了开发一种适用于薄型复合材料桁架(构件厚度为0.5 ~ 5.5 mm)的高效连接设计,建立了几种粘结连接设计的有限元模型,并对其强度进行了比较。在相同节点构型(构件数目、构件截面积、节点尺寸)和荷载条件下进行比较。本研究考虑了胶粘剂的破坏,每个设计的强度都是由胶粘剂层最大主应变的峰值值来确定的,因为这个破坏准则适用于模型中使用的增韧胶粘剂材料。在每个接头设计的强度、重量和可制造性之间进行权衡,以得出其整体性能的结论。结果表明,在模拟的连接设计中,圆形基复合棒插入管状金属件在强度重量比方面是最有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Comparative study of adhesive joint designs for composite trusses based on numerical models

Comparative study of adhesive joint designs for composite trusses based on numerical models

In the context of lightweight structure design for the transportation and robotics industries, new types of composite structures are being developed, in the form of trusses made of fiber-reinforced polymer composite members of small diameter (a few millimeters thick at most). Some concepts of wound trusses can be found in the literature, but in more general cases, for which a predefined wound truss shape is not usable, individual truss members must be joined together. The axial strength of the composite members allow them to carry a high load, and the joints between those members should be strong enough to carry this load as well. With the objective of developing an efficient joint design for an application in thin composite trusses (member thickness ranging from 0.5 to 5?mm), finite element models of several adhesive joint designs were built, and their strengths were compared. The comparison was made using the same joint configuration (number of members, member cross-sectional area, joint dimensions) and loading conditions. Adhesive failure was considered in this study, and the strength of each design was determined from the value of the peak maximum principal strain in the adhesive layer, as this failure criterion is suitable for the toughened adhesive material used in the models. A trade-off between the strength, weight and manufacturability of each joint design was made in order to conclude on their overall performance. Results suggested that, among the joint designs modelled, round-based composite rods inserted in a tubular metallic piece are the most efficient in terms of strength-to-weight ratio.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Adhesion Science
Applied Adhesion Science Dentistry-Dentistry (miscellaneous)
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊介绍: Applied Adhesion Science focuses on practical applications of adhesives, with special emphasis in fields such as oil industry, aerospace and biomedicine. Topics related to the phenomena of adhesion and the application of adhesive materials are welcome, especially in biomedical areas such as adhesive dentistry. Both theoretical and experimental works are considered for publication. Applied Adhesion Science is a peer-reviewed open access journal published under the SpringerOpen brand. The journal''s open access policy offers a fast publication workflow whilst maintaining rigorous peer review process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信