映射到不同域上的Sakaguchi类函数子类的系数界估计

IF 0.3 Q4 MATHEMATICS
B. Aarthy, B. Keerthi
{"title":"映射到不同域上的Sakaguchi类函数子类的系数界估计","authors":"B. Aarthy, B. Keerthi","doi":"10.1515/conop-2022-0140","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we define a new subclass of analytic functions ℛ ( t , δ ) {\\mathcal{ {\\mathcal R} }}\\left(t,\\delta ) in the open unit disk D {\\mathbb{D}} associated with the petal-shaped domain. The bounds of the coefficients a 2 {a}_{2} , a 3 {a}_{3} , and a 4 {a}_{4} for the functions in the new class are obtained. We also acquire the bound of the Fekete-Szegö inequality and the bound of the Toeplitz determinants T 2 ( 2 ) {{\\mathcal{T}}}_{2}\\left(2) and T 3 ( 1 ) {{\\mathcal{T}}}_{3}\\left(1) for the functions in the defined class.","PeriodicalId":53800,"journal":{"name":"Concrete Operators","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of coefficient bounds for a subclass of Sakaguchi kind functions mapped onto various domains\",\"authors\":\"B. Aarthy, B. Keerthi\",\"doi\":\"10.1515/conop-2022-0140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we define a new subclass of analytic functions ℛ ( t , δ ) {\\\\mathcal{ {\\\\mathcal R} }}\\\\left(t,\\\\delta ) in the open unit disk D {\\\\mathbb{D}} associated with the petal-shaped domain. The bounds of the coefficients a 2 {a}_{2} , a 3 {a}_{3} , and a 4 {a}_{4} for the functions in the new class are obtained. We also acquire the bound of the Fekete-Szegö inequality and the bound of the Toeplitz determinants T 2 ( 2 ) {{\\\\mathcal{T}}}_{2}\\\\left(2) and T 3 ( 1 ) {{\\\\mathcal{T}}}_{3}\\\\left(1) for the functions in the defined class.\",\"PeriodicalId\":53800,\"journal\":{\"name\":\"Concrete Operators\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concrete Operators\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/conop-2022-0140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concrete Operators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/conop-2022-0140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要在花瓣形区域的开放单元盘D {\mathbb{D}}上,我们定义了解析函数的一个新的子类:积分函数(t, δ) {\mathcal{ {\mathcal R} }}\left (t, \delta)。得到了这类函数的系数{a2a_2}、{a3a_3}和{a4a_4的}界{。我们还得到了定义类中函数的Fekete-Szegö不等式的界和Toeplitz行列式t2 (2) }{}{}{{\mathcal{T}}} _2 {}\left(2)和t3 (1) {{\mathcal{T}}} _3 {}\left(1)的界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of coefficient bounds for a subclass of Sakaguchi kind functions mapped onto various domains
Abstract In this article, we define a new subclass of analytic functions ℛ ( t , δ ) {\mathcal{ {\mathcal R} }}\left(t,\delta ) in the open unit disk D {\mathbb{D}} associated with the petal-shaped domain. The bounds of the coefficients a 2 {a}_{2} , a 3 {a}_{3} , and a 4 {a}_{4} for the functions in the new class are obtained. We also acquire the bound of the Fekete-Szegö inequality and the bound of the Toeplitz determinants T 2 ( 2 ) {{\mathcal{T}}}_{2}\left(2) and T 3 ( 1 ) {{\mathcal{T}}}_{3}\left(1) for the functions in the defined class.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Concrete Operators
Concrete Operators MATHEMATICS-
CiteScore
1.00
自引率
16.70%
发文量
10
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信