{"title":"多项式的除数问题","authors":"Benjamin Klahn","doi":"10.4064/aa200528-21-4","DOIUrl":null,"url":null,"abstract":"We characterize all monic polynomials f(x) ∈ Z[x] that have the property that f(p) | f(p), for all sufficiently large primes p ≥ N(f). We also give necessary conditions and a sufficient condition for monic polynomials f(x) ∈ Z[x] to satisfy f(p) | f(p) for all primes p.","PeriodicalId":37888,"journal":{"name":"Acta Arithmetica","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A divisor problem for polynomials\",\"authors\":\"Benjamin Klahn\",\"doi\":\"10.4064/aa200528-21-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We characterize all monic polynomials f(x) ∈ Z[x] that have the property that f(p) | f(p), for all sufficiently large primes p ≥ N(f). We also give necessary conditions and a sufficient condition for monic polynomials f(x) ∈ Z[x] to satisfy f(p) | f(p) for all primes p.\",\"PeriodicalId\":37888,\"journal\":{\"name\":\"Acta Arithmetica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Arithmetica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/aa200528-21-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Arithmetica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/aa200528-21-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
We characterize all monic polynomials f(x) ∈ Z[x] that have the property that f(p) | f(p), for all sufficiently large primes p ≥ N(f). We also give necessary conditions and a sufficient condition for monic polynomials f(x) ∈ Z[x] to satisfy f(p) | f(p) for all primes p.