惠特尼的可拓定理和海森堡群中曲线的有限原理

IF 1.3 2区 数学 Q1 MATHEMATICS
Scott Zimmerman
{"title":"惠特尼的可拓定理和海森堡群中曲线的有限原理","authors":"Scott Zimmerman","doi":"10.4171/rmi/1339","DOIUrl":null,"url":null,"abstract":"Consider the sub-Riemannian Heisenberg group H. In this paper, we answer the following question: given a compact set K ⊆ R and a continuous map f : K → H, when is there a horizontal C curve F : R → H such that F |K = f? Whitney originally answered this question for real valued mappings [35], and Fefferman provided a complete answer for real valued functions defined on subsets of R [12]. We also prove a finiteness principle for C √ ω horizontal curves in the Heisenberg group in the sense of Brudnyi and Shvartsman [5].","PeriodicalId":49604,"journal":{"name":"Revista Matematica Iberoamericana","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Whitney’s extension theorem and the finiteness principle for curves in the Heisenberg group\",\"authors\":\"Scott Zimmerman\",\"doi\":\"10.4171/rmi/1339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider the sub-Riemannian Heisenberg group H. In this paper, we answer the following question: given a compact set K ⊆ R and a continuous map f : K → H, when is there a horizontal C curve F : R → H such that F |K = f? Whitney originally answered this question for real valued mappings [35], and Fefferman provided a complete answer for real valued functions defined on subsets of R [12]. We also prove a finiteness principle for C √ ω horizontal curves in the Heisenberg group in the sense of Brudnyi and Shvartsman [5].\",\"PeriodicalId\":49604,\"journal\":{\"name\":\"Revista Matematica Iberoamericana\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Matematica Iberoamericana\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/rmi/1339\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Matematica Iberoamericana","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/rmi/1339","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

考虑亚黎曼海森堡群H。在本文中,我们回答了以下问题:给定紧致集K⊆R和连续映射f:K→ H、 什么时候有水平的C曲线F:R→ 使得F|K=F?Whitney最初回答了实值映射的这个问题[35],而Fefferman提供了定义在R[12]子集上的实值函数的完整答案。在Brudnyi和Shvartsman[5]意义上,我们还证明了海森堡群中C√ω水平曲线的有限性原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Whitney’s extension theorem and the finiteness principle for curves in the Heisenberg group
Consider the sub-Riemannian Heisenberg group H. In this paper, we answer the following question: given a compact set K ⊆ R and a continuous map f : K → H, when is there a horizontal C curve F : R → H such that F |K = f? Whitney originally answered this question for real valued mappings [35], and Fefferman provided a complete answer for real valued functions defined on subsets of R [12]. We also prove a finiteness principle for C √ ω horizontal curves in the Heisenberg group in the sense of Brudnyi and Shvartsman [5].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
61
审稿时长
>12 weeks
期刊介绍: Revista Matemática Iberoamericana publishes original research articles on all areas of mathematics. Its distinguished Editorial Board selects papers according to the highest standards. Founded in 1985, Revista is a scientific journal of Real Sociedad Matemática Española.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信