{"title":"ADE型量子化单李代数BGG范畴中无穷维模的张量积","authors":"Zhaoting Wei̇","doi":"10.24330/ieja.1357059","DOIUrl":null,"url":null,"abstract":"We consider the BGG category $\\O$ of a quantized universal enveloping algebra $U_q(\\mathfrak{g})$. It is well-known that $M\\otimes N\\in \\O$ if $M$ or $N$ is finite dimensional. When $\\mathfrak{g}$ is simple and of type ADE, we prove in this paper that $M\\otimes N\\notin \\O$ if $M$ and $N$ are both infinite dimensional.","PeriodicalId":43749,"journal":{"name":"International Electronic Journal of Algebra","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tensor products of infinite dimensional modules in the BGG category of a quantized simple Lie algebra of type ADE\",\"authors\":\"Zhaoting Wei̇\",\"doi\":\"10.24330/ieja.1357059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the BGG category $\\\\O$ of a quantized universal enveloping algebra $U_q(\\\\mathfrak{g})$. It is well-known that $M\\\\otimes N\\\\in \\\\O$ if $M$ or $N$ is finite dimensional. When $\\\\mathfrak{g}$ is simple and of type ADE, we prove in this paper that $M\\\\otimes N\\\\notin \\\\O$ if $M$ and $N$ are both infinite dimensional.\",\"PeriodicalId\":43749,\"journal\":{\"name\":\"International Electronic Journal of Algebra\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electronic Journal of Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24330/ieja.1357059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24330/ieja.1357059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Tensor products of infinite dimensional modules in the BGG category of a quantized simple Lie algebra of type ADE
We consider the BGG category $\O$ of a quantized universal enveloping algebra $U_q(\mathfrak{g})$. It is well-known that $M\otimes N\in \O$ if $M$ or $N$ is finite dimensional. When $\mathfrak{g}$ is simple and of type ADE, we prove in this paper that $M\otimes N\notin \O$ if $M$ and $N$ are both infinite dimensional.
期刊介绍:
The International Electronic Journal of Algebra is published twice a year. IEJA is reviewed by Mathematical Reviews, MathSciNet, Zentralblatt MATH, Current Mathematical Publications. IEJA seeks previously unpublished papers that contain: Module theory Ring theory Group theory Algebras Comodules Corings Coalgebras Representation theory Number theory.