生物学上的椭圆系统的无穷分岔和多重性结果

IF 1.1 4区 数学 Q2 MATHEMATICS, APPLIED
Chunqiu Li, Zhen Peng
{"title":"生物学上的椭圆系统的无穷分岔和多重性结果","authors":"Chunqiu Li, Zhen Peng","doi":"10.3233/asy-231839","DOIUrl":null,"url":null,"abstract":"This article is concerned with the bifurcation from infinity of the following elliptic system arising from biology − κ Δ u = λ u + f ( x , u ) − v , − Δ v = u − v , in a bounded domain Ω ⊂ R N . We regard this problem as a stationary problem of some reaction-diffusion system. By using a method of a pure dynamical nature, we will establish some multiplicity results on bifurcations from infinity for this system under an appropriate Landesman-Lazer type condition.","PeriodicalId":55438,"journal":{"name":"Asymptotic Analysis","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bifurcation from infinity and multiplicity results for an elliptic system from biology\",\"authors\":\"Chunqiu Li, Zhen Peng\",\"doi\":\"10.3233/asy-231839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article is concerned with the bifurcation from infinity of the following elliptic system arising from biology − κ Δ u = λ u + f ( x , u ) − v , − Δ v = u − v , in a bounded domain Ω ⊂ R N . We regard this problem as a stationary problem of some reaction-diffusion system. By using a method of a pure dynamical nature, we will establish some multiplicity results on bifurcations from infinity for this system under an appropriate Landesman-Lazer type condition.\",\"PeriodicalId\":55438,\"journal\":{\"name\":\"Asymptotic Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptotic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3233/asy-231839\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptotic Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-231839","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了在有界域Ω⊂RN中,由生物学−κΔu=λu+f(x,u)−v,−Δv=u−v引起的下列椭圆系统从无穷大开始的分支。我们把这个问题看作是一个反应扩散系统的平稳问题。利用纯动力学性质的方法,在适当的Landesman-Lazer型条件下,我们将建立该系统从无穷远分岔的一些多重性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bifurcation from infinity and multiplicity results for an elliptic system from biology
This article is concerned with the bifurcation from infinity of the following elliptic system arising from biology − κ Δ u = λ u + f ( x , u ) − v , − Δ v = u − v , in a bounded domain Ω ⊂ R N . We regard this problem as a stationary problem of some reaction-diffusion system. By using a method of a pure dynamical nature, we will establish some multiplicity results on bifurcations from infinity for this system under an appropriate Landesman-Lazer type condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asymptotic Analysis
Asymptotic Analysis 数学-应用数学
CiteScore
1.90
自引率
7.10%
发文量
91
审稿时长
6 months
期刊介绍: The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand. Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信