使用贝叶斯方法预测横断面调查中受访者接触的天数

IF 0.5 4区 数学 Q4 SOCIAL SCIENCES, MATHEMATICAL METHODS
Stephanie Coffey, Michael R. Elliott
{"title":"使用贝叶斯方法预测横断面调查中受访者接触的天数","authors":"Stephanie Coffey, Michael R. Elliott","doi":"10.2478/jos-2023-0015","DOIUrl":null,"url":null,"abstract":"Abstract Surveys estimate and monitor a variety of data collection parameters, including response propensity, number of contacts, and data collection costs. These parameters can be used as inputs to a responsive/adaptive design or to monitor the progression of a data collection period against predefined expectations. Recently, Bayesian methods have emerged as a method for combining historical information or external data with data from the in-progress data collection period to improve prediction. We develop a Bayesian method for predicting a measure of case-level progress or productivity, the estimated time lag, in days, between first contact attempt and first respondent contact. We compare the quality of predictions from the Bayesian method to predictions generated from more commonly-used predictive methods that leverage data from only historical data collection periods or the in-progress round of data collection. Using prediction error and misclassification as short- or long- day lags, we demonstrate that the Bayesian method results in improved predictions close to the day of the first contact attempt, when these predictions may be most informative for interventions or interviewer feedback. This application adds to evidence that combining historical and current information about data collection, in a Bayesian framework, can improve predictions of data collection parameters.","PeriodicalId":51092,"journal":{"name":"Journal of Official Statistics","volume":"39 1","pages":"325 - 349"},"PeriodicalIF":0.5000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Days to Respondent Contact in Cross-Sectional Surveys Using a Bayesian Approach\",\"authors\":\"Stephanie Coffey, Michael R. Elliott\",\"doi\":\"10.2478/jos-2023-0015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Surveys estimate and monitor a variety of data collection parameters, including response propensity, number of contacts, and data collection costs. These parameters can be used as inputs to a responsive/adaptive design or to monitor the progression of a data collection period against predefined expectations. Recently, Bayesian methods have emerged as a method for combining historical information or external data with data from the in-progress data collection period to improve prediction. We develop a Bayesian method for predicting a measure of case-level progress or productivity, the estimated time lag, in days, between first contact attempt and first respondent contact. We compare the quality of predictions from the Bayesian method to predictions generated from more commonly-used predictive methods that leverage data from only historical data collection periods or the in-progress round of data collection. Using prediction error and misclassification as short- or long- day lags, we demonstrate that the Bayesian method results in improved predictions close to the day of the first contact attempt, when these predictions may be most informative for interventions or interviewer feedback. This application adds to evidence that combining historical and current information about data collection, in a Bayesian framework, can improve predictions of data collection parameters.\",\"PeriodicalId\":51092,\"journal\":{\"name\":\"Journal of Official Statistics\",\"volume\":\"39 1\",\"pages\":\"325 - 349\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Official Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2478/jos-2023-0015\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Official Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/jos-2023-0015","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0

摘要

调查评估和监测各种数据收集参数,包括响应倾向、接触次数和数据收集成本。这些参数可用作响应式/自适应设计的输入,或根据预定义的期望监视数据收集周期的进展。最近,贝叶斯方法作为一种将历史信息或外部数据与正在进行的数据收集期的数据相结合以改进预测的方法而出现。我们开发了一种贝叶斯方法来预测案例级进展或生产力的测量,估计的时间滞后,以天为单位,在第一次接触尝试和第一次被调查者接触之间。我们将贝叶斯方法的预测质量与更常用的预测方法产生的预测质量进行了比较,这些预测方法仅利用历史数据收集周期或正在进行的数据收集周期的数据。使用预测误差和错误分类作为短或长天滞后,我们证明了贝叶斯方法在接近第一次接触尝试的当天产生改进的预测,当这些预测可能对干预或面试官反馈最有信息。该应用程序进一步证明,在贝叶斯框架中结合有关数据收集的历史和当前信息,可以改进对数据收集参数的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Days to Respondent Contact in Cross-Sectional Surveys Using a Bayesian Approach
Abstract Surveys estimate and monitor a variety of data collection parameters, including response propensity, number of contacts, and data collection costs. These parameters can be used as inputs to a responsive/adaptive design or to monitor the progression of a data collection period against predefined expectations. Recently, Bayesian methods have emerged as a method for combining historical information or external data with data from the in-progress data collection period to improve prediction. We develop a Bayesian method for predicting a measure of case-level progress or productivity, the estimated time lag, in days, between first contact attempt and first respondent contact. We compare the quality of predictions from the Bayesian method to predictions generated from more commonly-used predictive methods that leverage data from only historical data collection periods or the in-progress round of data collection. Using prediction error and misclassification as short- or long- day lags, we demonstrate that the Bayesian method results in improved predictions close to the day of the first contact attempt, when these predictions may be most informative for interventions or interviewer feedback. This application adds to evidence that combining historical and current information about data collection, in a Bayesian framework, can improve predictions of data collection parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Official Statistics
Journal of Official Statistics STATISTICS & PROBABILITY-
CiteScore
1.90
自引率
9.10%
发文量
39
审稿时长
>12 weeks
期刊介绍: JOS is an international quarterly published by Statistics Sweden. We publish research articles in the area of survey and statistical methodology and policy matters facing national statistical offices and other producers of statistics. The intended readers are researchers or practicians at statistical agencies or in universities and private organizations dealing with problems which concern aspects of production of official statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信