{"title":"Blum-Hanson物业","authors":"S. Grivaux","doi":"10.1515/conop-2019-0009","DOIUrl":null,"url":null,"abstract":"Abstract Given a (real or complex, separable) Banach space, and a contraction T on X, we say that T has the Blum-Hanson property if whenever x, y ∈ X are such that Tnx tends weakly to y in X as n tends to infinity, the means 1N∑k=1NTnkx {1 \\over N}\\sum\\limits_{k = 1}^N {{T^{{n_k}}}x} tend to y in norm for every strictly increasing sequence (nk) k≥1 of integers. The space X itself has the Blum-Hanson property if every contraction on X has the Blum-Hanson property. We explain the ergodic-theoretic motivation for the Blum-Hanson property, prove that Hilbert spaces have the Blum-Hanson property, and then present a recent criterion of a geometric flavor, due to Lefèvre-Matheron-Primot, which allows to retrieve essentially all the known examples of spaces with the Blum-Hanson property. Lastly, following Lefèvre-Matheron, we characterize the compact metric spaces K such that the space C(K) has the Blum-Hanson property.","PeriodicalId":53800,"journal":{"name":"Concrete Operators","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/conop-2019-0009","citationCount":"0","resultStr":"{\"title\":\"The Blum-Hanson Property\",\"authors\":\"S. Grivaux\",\"doi\":\"10.1515/conop-2019-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Given a (real or complex, separable) Banach space, and a contraction T on X, we say that T has the Blum-Hanson property if whenever x, y ∈ X are such that Tnx tends weakly to y in X as n tends to infinity, the means 1N∑k=1NTnkx {1 \\\\over N}\\\\sum\\\\limits_{k = 1}^N {{T^{{n_k}}}x} tend to y in norm for every strictly increasing sequence (nk) k≥1 of integers. The space X itself has the Blum-Hanson property if every contraction on X has the Blum-Hanson property. We explain the ergodic-theoretic motivation for the Blum-Hanson property, prove that Hilbert spaces have the Blum-Hanson property, and then present a recent criterion of a geometric flavor, due to Lefèvre-Matheron-Primot, which allows to retrieve essentially all the known examples of spaces with the Blum-Hanson property. Lastly, following Lefèvre-Matheron, we characterize the compact metric spaces K such that the space C(K) has the Blum-Hanson property.\",\"PeriodicalId\":53800,\"journal\":{\"name\":\"Concrete Operators\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/conop-2019-0009\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concrete Operators\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/conop-2019-0009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concrete Operators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/conop-2019-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Abstract Given a (real or complex, separable) Banach space, and a contraction T on X, we say that T has the Blum-Hanson property if whenever x, y ∈ X are such that Tnx tends weakly to y in X as n tends to infinity, the means 1N∑k=1NTnkx {1 \over N}\sum\limits_{k = 1}^N {{T^{{n_k}}}x} tend to y in norm for every strictly increasing sequence (nk) k≥1 of integers. The space X itself has the Blum-Hanson property if every contraction on X has the Blum-Hanson property. We explain the ergodic-theoretic motivation for the Blum-Hanson property, prove that Hilbert spaces have the Blum-Hanson property, and then present a recent criterion of a geometric flavor, due to Lefèvre-Matheron-Primot, which allows to retrieve essentially all the known examples of spaces with the Blum-Hanson property. Lastly, following Lefèvre-Matheron, we characterize the compact metric spaces K such that the space C(K) has the Blum-Hanson property.