广义扩展Riemann-Liouville型分数阶导数算子

IF 1 Q1 MATHEMATICS
Hafida Abbas, Abdelhalim Azzouz, M. B. Zahaf, M. Belmekki
{"title":"广义扩展Riemann-Liouville型分数阶导数算子","authors":"Hafida Abbas, Abdelhalim Azzouz, M. B. Zahaf, M. Belmekki","doi":"10.46793/kgjmat2301.057a","DOIUrl":null,"url":null,"abstract":"In this paper, we present new extensions of incomplete gamma, beta, Gauss hypergeometric, confluent hypergeometric function and Appell-Lauricella hypergeometric functions, by using the extended Bessel function due to Boudjelkha [?]. Some recurrence relations, transformation formulas, Mellin transform and integral representations are obtained for these generalizations. Further, an extension of the Riemann-Liouville fractional derivative operator is established.","PeriodicalId":44902,"journal":{"name":"Kragujevac Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Extended Riemann-Liouville Type Fractional Derivative Operator\",\"authors\":\"Hafida Abbas, Abdelhalim Azzouz, M. B. Zahaf, M. Belmekki\",\"doi\":\"10.46793/kgjmat2301.057a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present new extensions of incomplete gamma, beta, Gauss hypergeometric, confluent hypergeometric function and Appell-Lauricella hypergeometric functions, by using the extended Bessel function due to Boudjelkha [?]. Some recurrence relations, transformation formulas, Mellin transform and integral representations are obtained for these generalizations. Further, an extension of the Riemann-Liouville fractional derivative operator is established.\",\"PeriodicalId\":44902,\"journal\":{\"name\":\"Kragujevac Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kragujevac Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46793/kgjmat2301.057a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kragujevac Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46793/kgjmat2301.057a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们利用Boudjelkha[?]的扩展贝塞尔函数,提出了不完全伽玛、β、高斯超几何、对流超几何函数和Appel-Lauricella超几何函数的新扩展。对这些推广得到了一些递推关系、变换公式、梅林变换和积分表示。进一步,建立了Riemann-Liouville分数阶导数算子的一个推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Extended Riemann-Liouville Type Fractional Derivative Operator
In this paper, we present new extensions of incomplete gamma, beta, Gauss hypergeometric, confluent hypergeometric function and Appell-Lauricella hypergeometric functions, by using the extended Bessel function due to Boudjelkha [?]. Some recurrence relations, transformation formulas, Mellin transform and integral representations are obtained for these generalizations. Further, an extension of the Riemann-Liouville fractional derivative operator is established.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信