{"title":"Wiener-Hopf方程的渐近展开式","authors":"Kui Li, R. Wong","doi":"10.1142/s0219530520500207","DOIUrl":null,"url":null,"abstract":"Wiener–Hopf Equations are of the form [Formula: see text] These equations arise in many physical problems such as radiative transport theory, reflection of an electromagnetive plane wave, sound wave transmission from a tube, and in material science. They are also known as the renewal equations on the half-line in Probability Theory. In this paper, we present a method of deriving asymptotic expansions for the solutions to these equations. Our method makes use of the Wiener–Hopf technique as well as the asymptotic expansions of Stieltjes and Hilbert transforms.","PeriodicalId":55519,"journal":{"name":"Analysis and Applications","volume":"1 1","pages":"1-34"},"PeriodicalIF":2.0000,"publicationDate":"2020-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Asymptotic expansions for Wiener–Hopf equations\",\"authors\":\"Kui Li, R. Wong\",\"doi\":\"10.1142/s0219530520500207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wiener–Hopf Equations are of the form [Formula: see text] These equations arise in many physical problems such as radiative transport theory, reflection of an electromagnetive plane wave, sound wave transmission from a tube, and in material science. They are also known as the renewal equations on the half-line in Probability Theory. In this paper, we present a method of deriving asymptotic expansions for the solutions to these equations. Our method makes use of the Wiener–Hopf technique as well as the asymptotic expansions of Stieltjes and Hilbert transforms.\",\"PeriodicalId\":55519,\"journal\":{\"name\":\"Analysis and Applications\",\"volume\":\"1 1\",\"pages\":\"1-34\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2020-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219530520500207\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219530520500207","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Wiener–Hopf Equations are of the form [Formula: see text] These equations arise in many physical problems such as radiative transport theory, reflection of an electromagnetive plane wave, sound wave transmission from a tube, and in material science. They are also known as the renewal equations on the half-line in Probability Theory. In this paper, we present a method of deriving asymptotic expansions for the solutions to these equations. Our method makes use of the Wiener–Hopf technique as well as the asymptotic expansions of Stieltjes and Hilbert transforms.
期刊介绍:
Analysis and Applications publishes high quality mathematical papers that treat those parts of analysis which have direct or potential applications to the physical and biological sciences and engineering. Some of the topics from analysis include approximation theory, asymptotic analysis, calculus of variations, integral equations, integral transforms, ordinary and partial differential equations, delay differential equations, and perturbation methods. The primary aim of the journal is to encourage the development of new techniques and results in applied analysis.