沿线排列具有圆锥形奇点的Calabi–Yau度量

IF 1.3 1区 数学 Q1 MATHEMATICS
Martin de Borbon, Cristiano Spotti
{"title":"沿线排列具有圆锥形奇点的Calabi–Yau度量","authors":"Martin de Borbon, Cristiano Spotti","doi":"10.4310/jdg/1680883576","DOIUrl":null,"url":null,"abstract":"Given a weighted line arrangement in the projective plane, with weights satisfying natural constraint conditions, we show the existence of a Ricci-flat K\\\"ahler metric with cone singularities along the lines asymptotic to a polyhedral K\\\"ahler cone at each multiple point. Moreover, we discuss a Chern-Weil formula that expresses the energy of the metric as a `logarithmic' Euler characteristic with points weighted according to the volume density of the metric.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2017-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Calabi–Yau metrics with conical singularities along line arrangements\",\"authors\":\"Martin de Borbon, Cristiano Spotti\",\"doi\":\"10.4310/jdg/1680883576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a weighted line arrangement in the projective plane, with weights satisfying natural constraint conditions, we show the existence of a Ricci-flat K\\\\\\\"ahler metric with cone singularities along the lines asymptotic to a polyhedral K\\\\\\\"ahler cone at each multiple point. Moreover, we discuss a Chern-Weil formula that expresses the energy of the metric as a `logarithmic' Euler characteristic with points weighted according to the volume density of the metric.\",\"PeriodicalId\":15642,\"journal\":{\"name\":\"Journal of Differential Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2017-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jdg/1680883576\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jdg/1680883576","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

给定投影平面上的加权线排列,在权值满足自然约束条件的情况下,我们证明了一个Ricci-flat K\ ahler度规的存在性,该度规在每个多点上沿多面体K\ ahler圆锥渐近的直线上具有锥奇点。此外,我们讨论了一个chen - weil公式,该公式将度规的能量表示为根据度规的体积密度加权的点的“对数”欧拉特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Calabi–Yau metrics with conical singularities along line arrangements
Given a weighted line arrangement in the projective plane, with weights satisfying natural constraint conditions, we show the existence of a Ricci-flat K\"ahler metric with cone singularities along the lines asymptotic to a polyhedral K\"ahler cone at each multiple point. Moreover, we discuss a Chern-Weil formula that expresses the energy of the metric as a `logarithmic' Euler characteristic with points weighted according to the volume density of the metric.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信