分位数回归中的群体识别与变量选择

IF 1 Q3 STATISTICS & PROBABILITY
A. Alkenani, Basim Shlaibah Msallam
{"title":"分位数回归中的群体识别与变量选择","authors":"A. Alkenani, Basim Shlaibah Msallam","doi":"10.1155/2019/8504174","DOIUrl":null,"url":null,"abstract":"Using the Pairwise Absolute Clustering and Sparsity (PACS) penalty, we proposed the regularized quantile regression QR method (QR-PACS). The PACS penalty achieves the elimination of insignificant predictors and the combination of predictors with indistinguishable coefficients (IC), which are the two issues raised in the searching for the true model. QR-PACS extends PACS from mean regression settings to QR settings. The paper shows that QR-PACS can yield promising predictive precision as well as identifying related groups in both simulation and real data.","PeriodicalId":44760,"journal":{"name":"Journal of Probability and Statistics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/8504174","citationCount":"0","resultStr":"{\"title\":\"Group Identification and Variable Selection in Quantile Regression\",\"authors\":\"A. Alkenani, Basim Shlaibah Msallam\",\"doi\":\"10.1155/2019/8504174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the Pairwise Absolute Clustering and Sparsity (PACS) penalty, we proposed the regularized quantile regression QR method (QR-PACS). The PACS penalty achieves the elimination of insignificant predictors and the combination of predictors with indistinguishable coefficients (IC), which are the two issues raised in the searching for the true model. QR-PACS extends PACS from mean regression settings to QR settings. The paper shows that QR-PACS can yield promising predictive precision as well as identifying related groups in both simulation and real data.\",\"PeriodicalId\":44760,\"journal\":{\"name\":\"Journal of Probability and Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2019/8504174\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Probability and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2019/8504174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2019/8504174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

利用对绝对聚类和稀疏性(PACS)惩罚,提出了正则化分位数回归QR方法(QR-PACS)。PACS惩罚实现了不显著预测因子的消除和不可区分系数(IC)预测因子的组合,这是寻找真实模型时遇到的两个问题。QR-PACS将PACS从平均回归设置扩展到QR设置。研究表明,QR-PACS在仿真和实际数据中均能取得较好的预测精度和相关群的识别效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Group Identification and Variable Selection in Quantile Regression
Using the Pairwise Absolute Clustering and Sparsity (PACS) penalty, we proposed the regularized quantile regression QR method (QR-PACS). The PACS penalty achieves the elimination of insignificant predictors and the combination of predictors with indistinguishable coefficients (IC), which are the two issues raised in the searching for the true model. QR-PACS extends PACS from mean regression settings to QR settings. The paper shows that QR-PACS can yield promising predictive precision as well as identifying related groups in both simulation and real data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Probability and Statistics
Journal of Probability and Statistics STATISTICS & PROBABILITY-
自引率
0.00%
发文量
14
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信