任意度分布网络的高效拉普拉斯谱密度计算

IF 1.4 Q2 SOCIAL SCIENCES, INTERDISCIPLINARY
Grover E. C. Guzman, P. Stadler, André Fujita
{"title":"任意度分布网络的高效拉普拉斯谱密度计算","authors":"Grover E. C. Guzman, P. Stadler, André Fujita","doi":"10.1017/nws.2021.10","DOIUrl":null,"url":null,"abstract":"Abstract The network Laplacian spectral density calculation is critical in many fields, including physics, chemistry, statistics, and mathematics. It is highly computationally intensive, limiting the analysis to small networks. Therefore, we present two efficient alternatives: one based on the network’s edges and another on the degrees. The former gives the exact spectral density of locally tree-like networks but requires iterative edge-based message-passing equations. In contrast, the latter obtains an approximation of the spectral density using only the degree distribution. The computational complexities are 𝒪(|E|log(n)) and 𝒪(n), respectively, in contrast to 𝒪(n3) of the diagonalization method, where n is the number of vertices and |E| is the number of edges.","PeriodicalId":51827,"journal":{"name":"Network Science","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Efficient Laplacian spectral density computations for networks with arbitrary degree distributions\",\"authors\":\"Grover E. C. Guzman, P. Stadler, André Fujita\",\"doi\":\"10.1017/nws.2021.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The network Laplacian spectral density calculation is critical in many fields, including physics, chemistry, statistics, and mathematics. It is highly computationally intensive, limiting the analysis to small networks. Therefore, we present two efficient alternatives: one based on the network’s edges and another on the degrees. The former gives the exact spectral density of locally tree-like networks but requires iterative edge-based message-passing equations. In contrast, the latter obtains an approximation of the spectral density using only the degree distribution. The computational complexities are 𝒪(|E|log(n)) and 𝒪(n), respectively, in contrast to 𝒪(n3) of the diagonalization method, where n is the number of vertices and |E| is the number of edges.\",\"PeriodicalId\":51827,\"journal\":{\"name\":\"Network Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/nws.2021.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SOCIAL SCIENCES, INTERDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/nws.2021.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

网络拉普拉斯谱密度计算在物理、化学、统计学和数学等领域具有重要意义。它是高度计算密集型的,限制了对小型网络的分析。因此,我们提出了两种有效的替代方案:一种基于网络的边,另一种基于度。前者给出了局部树状网络的精确谱密度,但需要迭代的基于边缘的消息传递方程。相比之下,后者仅使用度分布获得谱密度的近似值。与对角化方法中n为顶点数、|E|log(n)为边数的状态(n3)相比,计算复杂度分别为(|E|log(n))和(n)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Laplacian spectral density computations for networks with arbitrary degree distributions
Abstract The network Laplacian spectral density calculation is critical in many fields, including physics, chemistry, statistics, and mathematics. It is highly computationally intensive, limiting the analysis to small networks. Therefore, we present two efficient alternatives: one based on the network’s edges and another on the degrees. The former gives the exact spectral density of locally tree-like networks but requires iterative edge-based message-passing equations. In contrast, the latter obtains an approximation of the spectral density using only the degree distribution. The computational complexities are 𝒪(|E|log(n)) and 𝒪(n), respectively, in contrast to 𝒪(n3) of the diagonalization method, where n is the number of vertices and |E| is the number of edges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Network Science
Network Science SOCIAL SCIENCES, INTERDISCIPLINARY-
CiteScore
3.50
自引率
5.90%
发文量
24
期刊介绍: Network Science is an important journal for an important discipline - one using the network paradigm, focusing on actors and relational linkages, to inform research, methodology, and applications from many fields across the natural, social, engineering and informational sciences. Given growing understanding of the interconnectedness and globalization of the world, network methods are an increasingly recognized way to research aspects of modern society along with the individuals, organizations, and other actors within it. The discipline is ready for a comprehensive journal, open to papers from all relevant areas. Network Science is a defining work, shaping this discipline. The journal welcomes contributions from researchers in all areas working on network theory, methods, and data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信