具有周期点数量快速增长鲁棒性的泛型族

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
P. Berger
{"title":"具有周期点数量快速增长鲁棒性的泛型族","authors":"P. Berger","doi":"10.4310/acta.2021.v227.n2.a1","DOIUrl":null,"url":null,"abstract":"For any $2\\le r\\le \\infty$, $n\\ge 2$, we prove the existence of an open set $U$ of $C^r$-self-mappings of any $n$-manifold so that a generic map $f$ in $U$ displays a fast growth of the number of periodic points: the number of its $N$-periodic points grows as fast as asked. This complements the works of Martens-de Melo-van Strien, Gochenko-Shil'nikov-Turaev, Kaloshin, Bonatti-Diaz-Fisher and Turaev, to give a full answer to questions asked by Smale in 1967, Bowen in 1978 and Arnold in 1989, for any manifold of any dimension and for any smoothness. \nFurthermore for any $2\\le r<\\infty$ and any $k\\ge 0$, we prove the existence of an open set $\\hat U$ of $k$-parameter families in $U$ so that for a generic $(f_a)_a\\in \\hat U$, for every $\\|a\\|\\le 1$, the map $f_a$ displays a fast growth of periodic points. This gives a negative answer to a problem asked by Arnold in 1992 in the finitely smooth case.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2017-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Generic family displaying robustly a fast growth of the number of periodic points\",\"authors\":\"P. Berger\",\"doi\":\"10.4310/acta.2021.v227.n2.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For any $2\\\\le r\\\\le \\\\infty$, $n\\\\ge 2$, we prove the existence of an open set $U$ of $C^r$-self-mappings of any $n$-manifold so that a generic map $f$ in $U$ displays a fast growth of the number of periodic points: the number of its $N$-periodic points grows as fast as asked. This complements the works of Martens-de Melo-van Strien, Gochenko-Shil'nikov-Turaev, Kaloshin, Bonatti-Diaz-Fisher and Turaev, to give a full answer to questions asked by Smale in 1967, Bowen in 1978 and Arnold in 1989, for any manifold of any dimension and for any smoothness. \\nFurthermore for any $2\\\\le r<\\\\infty$ and any $k\\\\ge 0$, we prove the existence of an open set $\\\\hat U$ of $k$-parameter families in $U$ so that for a generic $(f_a)_a\\\\in \\\\hat U$, for every $\\\\|a\\\\|\\\\le 1$, the map $f_a$ displays a fast growth of periodic points. This gives a negative answer to a problem asked by Arnold in 1992 in the finitely smooth case.\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2017-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/acta.2021.v227.n2.a1\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/acta.2021.v227.n2.a1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 11

摘要

对于任何$2\le\infty$,$n\ge2$,我们证明了任何$n$-流形的$C^r$-自映射的开集$U$的存在,使得$U$中的泛型映射$f$显示周期点数量的快速增长:其$n$-周期点的数量增长得与要求的一样快。这补充了Martens de Melo van Strien、Gochenko-Shil'nikov-Turaev、Kaloshin、Bonatti Diaz Fisher和Turaev的作品,为Smale在1967年、Bowen在1978年和Arnold在1989年提出的任何维度的流形和任何光滑度的问题提供了完整的答案。此外,对于任何$2\le r<\infty$和任何$k\ge 0$,我们证明了$k$-参数族在$U$中的开集$\hat U$的存在性,使得对于一般的$(f_a)_a\hat U$,对于每$\|a\|\le 1$,映射$f_a$显示周期点的快速增长。这对Arnold在1992年提出的有限光滑情况下的一个问题给出了否定的答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generic family displaying robustly a fast growth of the number of periodic points
For any $2\le r\le \infty$, $n\ge 2$, we prove the existence of an open set $U$ of $C^r$-self-mappings of any $n$-manifold so that a generic map $f$ in $U$ displays a fast growth of the number of periodic points: the number of its $N$-periodic points grows as fast as asked. This complements the works of Martens-de Melo-van Strien, Gochenko-Shil'nikov-Turaev, Kaloshin, Bonatti-Diaz-Fisher and Turaev, to give a full answer to questions asked by Smale in 1967, Bowen in 1978 and Arnold in 1989, for any manifold of any dimension and for any smoothness. Furthermore for any $2\le r<\infty$ and any $k\ge 0$, we prove the existence of an open set $\hat U$ of $k$-parameter families in $U$ so that for a generic $(f_a)_a\in \hat U$, for every $\|a\|\le 1$, the map $f_a$ displays a fast growth of periodic points. This gives a negative answer to a problem asked by Arnold in 1992 in the finitely smooth case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信