{"title":"具有周期点数量快速增长鲁棒性的泛型族","authors":"P. Berger","doi":"10.4310/acta.2021.v227.n2.a1","DOIUrl":null,"url":null,"abstract":"For any $2\\le r\\le \\infty$, $n\\ge 2$, we prove the existence of an open set $U$ of $C^r$-self-mappings of any $n$-manifold so that a generic map $f$ in $U$ displays a fast growth of the number of periodic points: the number of its $N$-periodic points grows as fast as asked. This complements the works of Martens-de Melo-van Strien, Gochenko-Shil'nikov-Turaev, Kaloshin, Bonatti-Diaz-Fisher and Turaev, to give a full answer to questions asked by Smale in 1967, Bowen in 1978 and Arnold in 1989, for any manifold of any dimension and for any smoothness. \nFurthermore for any $2\\le r<\\infty$ and any $k\\ge 0$, we prove the existence of an open set $\\hat U$ of $k$-parameter families in $U$ so that for a generic $(f_a)_a\\in \\hat U$, for every $\\|a\\|\\le 1$, the map $f_a$ displays a fast growth of periodic points. This gives a negative answer to a problem asked by Arnold in 1992 in the finitely smooth case.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2017-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Generic family displaying robustly a fast growth of the number of periodic points\",\"authors\":\"P. Berger\",\"doi\":\"10.4310/acta.2021.v227.n2.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For any $2\\\\le r\\\\le \\\\infty$, $n\\\\ge 2$, we prove the existence of an open set $U$ of $C^r$-self-mappings of any $n$-manifold so that a generic map $f$ in $U$ displays a fast growth of the number of periodic points: the number of its $N$-periodic points grows as fast as asked. This complements the works of Martens-de Melo-van Strien, Gochenko-Shil'nikov-Turaev, Kaloshin, Bonatti-Diaz-Fisher and Turaev, to give a full answer to questions asked by Smale in 1967, Bowen in 1978 and Arnold in 1989, for any manifold of any dimension and for any smoothness. \\nFurthermore for any $2\\\\le r<\\\\infty$ and any $k\\\\ge 0$, we prove the existence of an open set $\\\\hat U$ of $k$-parameter families in $U$ so that for a generic $(f_a)_a\\\\in \\\\hat U$, for every $\\\\|a\\\\|\\\\le 1$, the map $f_a$ displays a fast growth of periodic points. This gives a negative answer to a problem asked by Arnold in 1992 in the finitely smooth case.\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2017-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/acta.2021.v227.n2.a1\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/acta.2021.v227.n2.a1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 11
摘要
对于任何$2\le\infty$,$n\ge2$,我们证明了任何$n$-流形的$C^r$-自映射的开集$U$的存在,使得$U$中的泛型映射$f$显示周期点数量的快速增长:其$n$-周期点的数量增长得与要求的一样快。这补充了Martens de Melo van Strien、Gochenko-Shil'nikov-Turaev、Kaloshin、Bonatti Diaz Fisher和Turaev的作品,为Smale在1967年、Bowen在1978年和Arnold在1989年提出的任何维度的流形和任何光滑度的问题提供了完整的答案。此外,对于任何$2\le r<\infty$和任何$k\ge 0$,我们证明了$k$-参数族在$U$中的开集$\hat U$的存在性,使得对于一般的$(f_a)_a\hat U$,对于每$\|a\|\le 1$,映射$f_a$显示周期点的快速增长。这对Arnold在1992年提出的有限光滑情况下的一个问题给出了否定的答案。
Generic family displaying robustly a fast growth of the number of periodic points
For any $2\le r\le \infty$, $n\ge 2$, we prove the existence of an open set $U$ of $C^r$-self-mappings of any $n$-manifold so that a generic map $f$ in $U$ displays a fast growth of the number of periodic points: the number of its $N$-periodic points grows as fast as asked. This complements the works of Martens-de Melo-van Strien, Gochenko-Shil'nikov-Turaev, Kaloshin, Bonatti-Diaz-Fisher and Turaev, to give a full answer to questions asked by Smale in 1967, Bowen in 1978 and Arnold in 1989, for any manifold of any dimension and for any smoothness.
Furthermore for any $2\le r<\infty$ and any $k\ge 0$, we prove the existence of an open set $\hat U$ of $k$-parameter families in $U$ so that for a generic $(f_a)_a\in \hat U$, for every $\|a\|\le 1$, the map $f_a$ displays a fast growth of periodic points. This gives a negative answer to a problem asked by Arnold in 1992 in the finitely smooth case.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.